mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
107 lines
3.6 KiB
C++
107 lines
3.6 KiB
C++
#include "models.h"
|
|
|
|
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
ggml_tensor * cur;
|
|
ggml_tensor * inpL;
|
|
|
|
// {n_embd, n_tokens}
|
|
inpL = build_inp_embd(model.tok_embd);
|
|
|
|
auto * inp_hybrid = build_inp_mem_hybrid();
|
|
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const int64_t n_head_kv = hparams.n_head_kv(il);
|
|
|
|
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "attn_norm", il);
|
|
|
|
if (n_head_kv == 0) {
|
|
cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
|
|
} else {
|
|
// Attention
|
|
|
|
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
|
cb(Qcur, "Qcur", il);
|
|
cb(Kcur, "Kcur", il);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
|
cb(Qcur, "Qcur", il);
|
|
cb(Kcur, "Kcur", il);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
// No RoPE :)
|
|
cur = build_attn(inp_hybrid->get_attn(),
|
|
model.layers[il].wo, NULL,
|
|
Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
}
|
|
if (il == n_layer - 1 && inp_out_ids) {
|
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
|
}
|
|
// residual
|
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
|
|
cb(cur, "ffn_inp", il);
|
|
|
|
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "ffn_norm", il);
|
|
|
|
// feed-forward network
|
|
if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
// FFN
|
|
cur = build_ffn(cur,
|
|
model.layers[il].ffn_up, NULL, NULL,
|
|
model.layers[il].ffn_gate, NULL, NULL,
|
|
model.layers[il].ffn_down, NULL, NULL,
|
|
NULL,
|
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
cb(cur, "ffn_out", il);
|
|
} else {
|
|
// MoE branch
|
|
cur = build_moe_ffn(cur,
|
|
model.layers[il].ffn_gate_inp,
|
|
model.layers[il].ffn_up_exps,
|
|
model.layers[il].ffn_gate_exps,
|
|
model.layers[il].ffn_down_exps,
|
|
nullptr,
|
|
n_expert, n_expert_used,
|
|
LLM_FFN_SILU, false,
|
|
false, 0.0,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
il);
|
|
cb(cur, "ffn_moe_out", il);
|
|
}
|
|
// residual
|
|
cur = ggml_add(ctx0, ffn_inp, cur);
|
|
|
|
cur = build_cvec(cur, il);
|
|
cb(cur, "l_out", il);
|
|
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
// final rmsnorm
|
|
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
|
|
cb(cur, "result_norm", -1);
|
|
res->t_embd = cur;
|
|
|
|
// lm_head
|
|
cur = build_lora_mm(model.output, cur);
|
|
|
|
cb(cur, "result_output", -1);
|
|
res->t_logits = cur;
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
}
|