#include "models.h" llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; ggml_tensor * cur; ggml_tensor * inpL; // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); auto * inp_hybrid = build_inp_mem_hybrid(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { const int64_t n_head_kv = hparams.n_head_kv(il); cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); if (n_head_kv == 0) { cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il); } else { // Attention struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // No RoPE :) cur = build_attn(inp_hybrid->get_attn(), model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // residual struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur); cb(cur, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network if (model.layers[il].ffn_gate_inp == nullptr) { // FFN cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { // MoE branch cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); } // residual cur = ggml_add(ctx0, ffn_inp, cur); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } // final rmsnorm cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }