Files
llama.cpp/ggml/src/ggml-zdnn/ggml-zdnn-rewrite.cpp
Aaron Teo 4b2f1cb1b8 ggml-zdnn: add bias data transform
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-07-28 16:05:53 +08:00

836 lines
28 KiB
C++

#include "zdnn.h"
#include "ggml-zdnn.h"
#include "ggml-zdnn-impl.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include <csignal>
#include <unistd.h>
static bool ggml_zdnn_op_mul_mat(struct ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
const ggml_tensor * weights = src0;
const ggml_tensor * inputs = src1;
ggml_tensor * output = dst;
const ggml_backend_zdnn_buffer * weights_extra = (const ggml_backend_zdnn_buffer *)weights->extra;
const ggml_backend_zdnn_buffer * inputs_extra = (const ggml_backend_zdnn_buffer *)inputs->extra;
ggml_backend_zdnn_buffer * output_extra = ( ggml_backend_zdnn_buffer *)output->extra;
zdnn_tensor_desc pre_tfm_desc_bias, tfm_desc_bias;
zdnn_ztensor ztensor_bias;
const int64_t weights_rows = ne01;
const int64_t weights_cols = ne00;
const int64_t inputs_rows = ne11;
const int64_t inputs_cols = ne10;
assert(inputs_cols == weights_cols);
const int64_t output_rows = ne1;
const int64_t output_cols = ne0;
const int64_t blas_dim[GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
zdnn_init_pre_transformed_desc(
ZDNN_1D,
FP32,
&pre_tfm_desc_bias,
blas_dim[3], blas_dim[2], blas_dim[1], blas_dim[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc_bias, &tfm_desc_bias));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc_bias, &tfm_desc_bias, &ztensor_bias));
void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_bias, bias_data));
std::raise(SIGINT);
ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &ztensor_bias,
false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
ZDNN_CHECK(zdnn_transform_ztensor(&output_extra->ztensor, output->data));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_bias));
free(bias_data);
}
static bool ggml_backend_zdnn_compute_forward(struct ggml_backend_zdnn_context * ctx, struct ggml_tensor * dst) {
switch (dst->op) {
case GGML_OP_MUL_MAT:
ggml_zdnn_op_mul_mat(ctx, dst->src[0], dst->src[1], dst);
break;
default:
return false;
}
return true;
GGML_UNUSED(ctx);
}
//
// globals
//
// initialised in ggml_backend_zdnn_reg
static struct ggml_backend_reg g_ggml_backend_zdnn_reg;
static struct ggml_backend_device g_ggml_backend_zdnn_device;
// information about an NNPA device
// note: assumes single NNPA device - the default one
static struct ggml_backend_zdnn_device_context {
int zdnn_device;
int zdnn_device_ref_count;
bool has_nnpa_parmblkformat_1;
int32_t max_dim_idx_size;
char name[128];
} g_ggml_ctx_dev_main = {
/* .zdnn_device = */ 0,
/* .zdnn_device_ref_count = */ 0,
/* .has_nnpa_parmblkformat_1 = */ false,
/* .max_dim_idx_size = */ 0,
/* .name = */ "",
};
// acquire
static int ggml_backend_zdnn_device_acq(struct ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
if (ctx->zdnn_device == 0) {
ctx->zdnn_device = 1;
}
if (ctx->zdnn_device) {
// ctx->has_nnpa_parmblkformat_1 = zdnn_has_nnpa_parmblkformat_1(ctx->zdnn_device);
ctx->max_dim_idx_size = zdnn_get_nnpa_max_dim_idx_size();
strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
ctx->name[sizeof(ctx->name) - 1] = '\0';
}
ctx->zdnn_device_ref_count++;
return ctx->zdnn_device;
}
// release
static void ggml_backend_zdnn_device_rel(struct ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
assert(ctx->zdnn_device_ref_count > 0);
ctx->zdnn_device_ref_count--;
}
struct ggml_backend_zdnn_context {
int device;
struct ggml_cgraph * gf;
};
static struct ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
GGML_LOG_INFO("%s: allocating\n", __func__);
struct ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)calloc(1, sizeof(struct ggml_backend_zdnn_context));
struct ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
int device = ctx_dev->zdnn_device;
GGML_LOG_INFO("%s: picking default device: %d\n", __func__, device);
ctx->device = device;
// GGML_LOG_INFO("%s: NNPA Name: %s\n", __func__, )
// GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_nnpa_parmblkformat_1 ? "true" : "false");
return ctx;
}
static void ggml_zdnn_free(struct ggml_backend_zdnn_context * ctx) {
GGML_LOG_INFO("%s: deallocating\n", __func__);
free(ctx);
}
struct ggml_backend_zdnn_buffer_context {
void * all_data;
size_t all_size;
bool owned;
int n_buffers;
struct ggml_backend_zdnn_buffer buffers[999999]; // TODO: CHANGE TO VECTOR
};
// finds the zTensor that contains the tensor data
// the assumption is that there is a 1-to-1 mapping between the host and NNPA
// device buffers, so we can find the zTensor buffer based on the host memory pointer
static zdnn_ztensor * ggml_zdnn_get_buffer(struct ggml_tensor * t, size_t * offset) {
const int64_t tsize = ggml_nbytes(t);
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
struct ggml_backend_zdnn_buffer_context * buf_ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
// find the view that contains the tensor fully
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t)t->data - (int64_t)buf_ctx->buffers[i].data;
if (ioffs >= 0 && ioffs + tsize <= (int64_t)buf_ctx->buffers[i].size) {
*offset = (size_t)ioffs;
return &buf_ctx->buffers[i].ztensor;
}
}
GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
return NULL;
}
static bool ggml_zdnn_supports_op(const struct ggml_backend_zdnn_device_context * ctx_dev, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
const struct ggml_tensor * dst = op;
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
case GGML_OP_CONCAT:
return true;
case GGML_OP_MUL_MAT:
{
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t max_dim_idx_size = ctx_dev->max_dim_idx_size;
return ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src1->type == GGML_TYPE_F32 &&
(ne0 <= max_dim_idx_size && ne1 <= max_dim_idx_size && ne10 <= max_dim_idx_size) &&
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
} break;
default:
return false;
}
GGML_UNUSED(ctx_dev);
}
static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * gf) {
struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context;
// struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)backend->device->context;
ctx->gf = gf;
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_empty(node)
|| node->op == GGML_OP_NONE
|| node->op == GGML_OP_RESHAPE
|| node->op == GGML_OP_VIEW
|| node->op == GGML_OP_PERMUTE
|| node->op == GGML_OP_TRANSPOSE) {
continue;
}
// #ifndef NDEBUG
// assert(node->buffer->buft == ggml_backend_zdnn_buffer_type());
// for (int j = 0; j < GGML_MAX_SRC; j++) {
// if (node->src[j] != nullptr) {
// assert(node->src[j]->buffer);
// assert(node->src[j]->buffer->buft == ggml_backend_zdnn_buffer_type() ||
// ggml_backend_buft_is_host(node->src[j]->buffer->buft));
// }
// }
// #endif // NDEBUG
bool ok = ggml_backend_zdnn_compute_forward(ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
__func__, ggml_op_name(node->op), node->name);
return GGML_STATUS_FAILED;
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
}
static void ggml_zdnn_init_bias_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) {
zdnn_init_pre_transformed_desc(
ZDNN_1D,
FP32,
&buffer->pre_tfm_desc,
tensor->ne[0], 1, 1, 1
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
}
static void ggml_zdnn_init_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) {
switch (tensor->op) {
case GGML_OP_MUL_MAT:
{
zdnn_init_pre_transformed_desc(
ZDNN_2D,
FP32,
&buffer->pre_tfm_desc,
tensor->ne[1], tensor->ne[0]
);
} break;
default:
{
zdnn_init_pre_transformed_desc(
ZDNN_NCHW,
FP32,
&buffer->pre_tfm_desc,
tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
);
} break;
}
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
}
////////////////////////////////////////////////////////////////////////////////
//
// backend interface
//
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
struct ggml_backend_zdnn_buffer * buf = &ctx->buffers[i];
// free any extra buffers (e.g., bias)
if (buf->extra != nullptr) {
zdnn_free_ztensor_buffer(&buf->extra->ztensor);
free(buf->extra->data);
}
zdnn_free_ztensor_buffer(&buf->ztensor);
}
if (ctx->owned) {
free(ctx->all_data);
}
free(ctx);
}
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
return ctx->all_data;
}
static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
// Create a dedicated buffer entry for this tensor
int tensor_buffer_idx;
int bias_buffer_idx;
const int64_t tsize = ggml_nbytes(tensor);
struct ggml_backend_zdnn_buffer * tensor_buffer;
tensor_buffer_idx = ctx->n_buffers;
tensor_buffer = &ctx->buffers[tensor_buffer_idx];
tensor_buffer->data = tensor->data;
tensor_buffer->size = tsize;
snprintf(tensor_buffer->name, sizeof(tensor_buffer->name), "%s", tensor->name);
ggml_zdnn_init_tensor(tensor_buffer, tensor);
ctx->n_buffers++;
if (tensor->op == GGML_OP_MUL_MAT) {
struct ggml_backend_zdnn_buffer * bias_buffer;
bias_buffer_idx = tensor_buffer_idx + 1;
bias_buffer = &ctx->buffers[bias_buffer_idx];
bias_buffer->data = calloc(tensor->ne[0], tensor->ne[0] * sizeof(float));
bias_buffer->size = tensor->ne[0] * sizeof(float);
snprintf(bias_buffer->name, sizeof(bias_buffer->name), "%s.bias", tensor->name);
ggml_zdnn_init_bias_tensor(bias_buffer, tensor);
ctx->n_buffers++;
tensor_buffer->extra = bias_buffer;
GGML_LOG_INFO("%s: initialized bias tensor '%s' in buffer %d, size = %8.2f MiB\n",
__func__, bias_buffer->name, bias_buffer_idx,
(float)bias_buffer->size / (1024.0f * 1024.0f));
}
GGML_LOG_INFO("%s: initialized tensor '%s' in buffer %d, size = %8.2f MiB\n",
__func__, ctx->buffers[tensor_buffer_idx].name, tensor_buffer_idx,
(float)tsize / (1024.0f * 1024.0f));
tensor->extra = &ctx->buffers[tensor_buffer_idx];
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra;
// if extra buffer exists, transform the ztensor with the buffer data. for e.g., bias
if (extra->extra) ZDNN_CHECK(zdnn_transform_ztensor(&extra->extra->ztensor, &extra->extra->data));
// for all other data
ZDNN_CHECK(zdnn_transform_ztensor(&extra->ztensor, (void *)((char *)tensor->data + offset)));
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra;
ZDNN_CHECK(zdnn_transform_origtensor(&extra->ztensor, (void *)((char *)tensor->data + offset)));
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static struct ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
};
//
// default buffer type
//
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context));
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if (size_aligned % size_page != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)buft->device->context;
GGML_ASSERT(ctx_dev->zdnn_device != 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
ctx->all_data = ggml_aligned_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
if (ctx->all_data != NULL) {
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
}
if (size_aligned > 0 && (ctx->all_data == NULL)) {
GGML_LOG_ERROR("%s: failed to allocate buffer, size = %8.2f MiB\n",
__func__, (float)size_aligned / (1024.0f / 1024.0f));
free(ctx);
return NULL;
}
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
}
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 256;
GGML_UNUSED(buft);
}
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL,
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_type_zdnn;
}
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
return "ZDNN_Mapped";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL,
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_from_ptr_type_zdnn;
}
static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
return GGML_ZDNN_NAME;
GGML_UNUSED(backend);
}
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context;
ggml_aligned_free(ctx, 0);
free(backend);
}
static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return ggml_zdnn_graph_compute(backend, cgraph);
}
static struct ggml_backend_i ggml_backend_zdnn_i = {
/* .get_name = */ ggml_backend_zdnn_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_zdnn_guid(void) {
static const char * guid_str = "IBM-ZDNN_ACCELER";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
ggml_backend_t ggml_backend_zdnn_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend));
* backend = (struct ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
}
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
}
//
// backend device
//
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
return GGML_ZDNN_NAME;
GGML_UNUSED(dev);
}
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
return "IBM Z Neural Network Processing Assist (NNPA)";
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 1;
*total = 1;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_zdnn_device_get_name(dev);
props->description = ggml_backend_zdnn_device_get_description(dev);
props->type = ggml_backend_zdnn_device_get_type(dev);
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = (struct ggml_backend_dev_caps) {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend));
* backend = (struct ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_zdnn_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context));
ctx->all_data = ptr;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
// page-align the data ptr
{
const uintptr_t offset = (uintptr_t)ptr % size_page;
ptr = (void *)((char *)ptr - offset);
size += offset;
}
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context;
GGML_ASSERT(ctx_dev->zdnn_device != 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
ctx->buffers[ctx->n_buffers].data = ptr;
ctx->buffers[ctx->n_buffers].size = size;
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
__func__, (float)size_aligned / (1024.0f / 1024.0f));
++ctx->n_buffers;
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
GGML_UNUSED(max_tensor_size);
}
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context;
return ggml_zdnn_supports_op(ctx_dev, op);
}
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return
buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
GGML_UNUSED(dev);
}
static bool ggml_backend_zdnn_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
return false;
GGML_UNUSED(dev);
GGML_UNUSED(op);
}
static struct ggml_backend_device_i ggml_backend_zdnn_device_i = {
/* .get_name = */ ggml_backend_zdnn_device_get_name,
/* .get_description = */ ggml_backend_zdnn_device_get_description,
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
/* .get_type = */ ggml_backend_zdnn_device_get_type,
/* .get_props = */ ggml_backend_zdnn_device_get_props,
/* .init_backend = */ ggml_backend_zdnn_device_init,
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
/* .offload_op = */ ggml_backend_zdnn_device_offload_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
//
// backend registry
//
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
return GGML_ZDNN_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
if (!zdnn_is_nnpa_installed()) {
return 0;
}
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
return &g_ggml_backend_zdnn_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static struct ggml_backend_feature g_ggml_backend_zdnn_features[] = {
// Change once we have proper detections
{ "NNPA_PARMBLK", "1"},
};
static struct ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
return g_ggml_backend_zdnn_features;
GGML_UNUSED(reg);
}
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
return NULL;
GGML_UNUSED(reg);
GGML_UNUSED(name);
}
static struct ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
/* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
/* .get_device = */ ggml_backend_zdnn_reg_device_get,
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
};
static void ggml_zdnn_cleanup(void) {
ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
}
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
atexit(ggml_zdnn_cleanup);
{
g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
/* .api_version = */ GGML_ZDNN_VERSION,
/* .iface = */ ggml_backend_zdnn_reg_i,
/* .context = */ NULL,
};
g_ggml_backend_zdnn_device = (ggml_backend_device) {
/* .iface = */ ggml_backend_zdnn_device_i,
/* .reg = */ &g_ggml_backend_zdnn_reg,
/* .context = */ &g_ggml_ctx_dev_main,
};
}
return &g_ggml_backend_zdnn_reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)