#include "zdnn.h" #include "ggml-zdnn.h" #include "ggml-zdnn-impl.h" #include "ggml-impl.h" #include "ggml-backend-impl.h" #include #include static bool ggml_zdnn_op_mul_mat(struct ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); const ggml_tensor * weights = src0; const ggml_tensor * inputs = src1; ggml_tensor * output = dst; const ggml_backend_zdnn_buffer * weights_extra = (const ggml_backend_zdnn_buffer *)weights->extra; const ggml_backend_zdnn_buffer * inputs_extra = (const ggml_backend_zdnn_buffer *)inputs->extra; ggml_backend_zdnn_buffer * output_extra = ( ggml_backend_zdnn_buffer *)output->extra; zdnn_tensor_desc pre_tfm_desc_bias, tfm_desc_bias; zdnn_ztensor ztensor_bias; const int64_t weights_rows = ne01; const int64_t weights_cols = ne00; const int64_t inputs_rows = ne11; const int64_t inputs_cols = ne10; assert(inputs_cols == weights_cols); const int64_t output_rows = ne1; const int64_t output_cols = ne0; const int64_t blas_dim[GGML_MAX_DIMS] = { 1, 1, 1, output_cols }; zdnn_init_pre_transformed_desc( ZDNN_1D, FP32, &pre_tfm_desc_bias, blas_dim[3], blas_dim[2], blas_dim[1], blas_dim[0] ); ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc_bias, &tfm_desc_bias)); ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc_bias, &tfm_desc_bias, &ztensor_bias)); void * bias_data = (void *)calloc(ne0, ggml_element_size(output)); ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_bias, bias_data)); std::raise(SIGINT); ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &ztensor_bias, false, true, MATMUL_OP_ADDITION, &output_extra->ztensor)); ZDNN_CHECK(zdnn_transform_ztensor(&output_extra->ztensor, output->data)); ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_bias)); free(bias_data); } static bool ggml_backend_zdnn_compute_forward(struct ggml_backend_zdnn_context * ctx, struct ggml_tensor * dst) { switch (dst->op) { case GGML_OP_MUL_MAT: ggml_zdnn_op_mul_mat(ctx, dst->src[0], dst->src[1], dst); break; default: return false; } return true; GGML_UNUSED(ctx); } // // globals // // initialised in ggml_backend_zdnn_reg static struct ggml_backend_reg g_ggml_backend_zdnn_reg; static struct ggml_backend_device g_ggml_backend_zdnn_device; // information about an NNPA device // note: assumes single NNPA device - the default one static struct ggml_backend_zdnn_device_context { int zdnn_device; int zdnn_device_ref_count; bool has_nnpa_parmblkformat_1; int32_t max_dim_idx_size; char name[128]; } g_ggml_ctx_dev_main = { /* .zdnn_device = */ 0, /* .zdnn_device_ref_count = */ 0, /* .has_nnpa_parmblkformat_1 = */ false, /* .max_dim_idx_size = */ 0, /* .name = */ "", }; // acquire static int ggml_backend_zdnn_device_acq(struct ggml_backend_zdnn_device_context * ctx) { assert(ctx != NULL); if (ctx->zdnn_device == 0) { ctx->zdnn_device = 1; } if (ctx->zdnn_device) { // ctx->has_nnpa_parmblkformat_1 = zdnn_has_nnpa_parmblkformat_1(ctx->zdnn_device); ctx->max_dim_idx_size = zdnn_get_nnpa_max_dim_idx_size(); strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1); ctx->name[sizeof(ctx->name) - 1] = '\0'; } ctx->zdnn_device_ref_count++; return ctx->zdnn_device; } // release static void ggml_backend_zdnn_device_rel(struct ggml_backend_zdnn_device_context * ctx) { assert(ctx != NULL); assert(ctx->zdnn_device_ref_count > 0); ctx->zdnn_device_ref_count--; } struct ggml_backend_zdnn_context { int device; struct ggml_cgraph * gf; }; static struct ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) { GGML_LOG_INFO("%s: allocating\n", __func__); struct ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)calloc(1, sizeof(struct ggml_backend_zdnn_context)); struct ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; int device = ctx_dev->zdnn_device; GGML_LOG_INFO("%s: picking default device: %d\n", __func__, device); ctx->device = device; // GGML_LOG_INFO("%s: NNPA Name: %s\n", __func__, ) // GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_nnpa_parmblkformat_1 ? "true" : "false"); return ctx; } static void ggml_zdnn_free(struct ggml_backend_zdnn_context * ctx) { GGML_LOG_INFO("%s: deallocating\n", __func__); free(ctx); } struct ggml_backend_zdnn_buffer_context { void * all_data; size_t all_size; bool owned; int n_buffers; struct ggml_backend_zdnn_buffer buffers[999999]; // TODO: CHANGE TO VECTOR }; // finds the zTensor that contains the tensor data // the assumption is that there is a 1-to-1 mapping between the host and NNPA // device buffers, so we can find the zTensor buffer based on the host memory pointer static zdnn_ztensor * ggml_zdnn_get_buffer(struct ggml_tensor * t, size_t * offset) { const int64_t tsize = ggml_nbytes(t); ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; struct ggml_backend_zdnn_buffer_context * buf_ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context; // find the view that contains the tensor fully for (int i = 0; i < buf_ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t)t->data - (int64_t)buf_ctx->buffers[i].data; if (ioffs >= 0 && ioffs + tsize <= (int64_t)buf_ctx->buffers[i].size) { *offset = (size_t)ioffs; return &buf_ctx->buffers[i].ztensor; } } GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name); return NULL; } static bool ggml_zdnn_supports_op(const struct ggml_backend_zdnn_device_context * ctx_dev, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; const struct ggml_tensor * dst = op; switch (op->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: case GGML_OP_CONCAT: return true; case GGML_OP_MUL_MAT: { GGML_TENSOR_BINARY_OP_LOCALS const int32_t max_dim_idx_size = ctx_dev->max_dim_idx_size; return ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->type == GGML_TYPE_F32 && (ne0 <= max_dim_idx_size && ne1 <= max_dim_idx_size && ne10 <= max_dim_idx_size) && (src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL); } break; default: return false; } GGML_UNUSED(ctx_dev); } static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * gf) { struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context; // struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)backend->device->context; ctx->gf = gf; for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; if (ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE) { continue; } // #ifndef NDEBUG // assert(node->buffer->buft == ggml_backend_zdnn_buffer_type()); // for (int j = 0; j < GGML_MAX_SRC; j++) { // if (node->src[j] != nullptr) { // assert(node->src[j]->buffer); // assert(node->src[j]->buffer->buft == ggml_backend_zdnn_buffer_type() || // ggml_backend_buft_is_host(node->src[j]->buffer->buft)); // } // } // #endif // NDEBUG bool ok = ggml_backend_zdnn_compute_forward(ctx, node); if (!ok) { GGML_LOG_ERROR("%s: unsupported op %s (%s)\n", __func__, ggml_op_name(node->op), node->name); return GGML_STATUS_FAILED; } GGML_ASSERT(ok); } return GGML_STATUS_SUCCESS; } static void ggml_zdnn_init_bias_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) { zdnn_init_pre_transformed_desc( ZDNN_1D, FP32, &buffer->pre_tfm_desc, tensor->ne[0], 1, 1, 1 ); ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc)); ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor)); } static void ggml_zdnn_init_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) { switch (tensor->op) { case GGML_OP_MUL_MAT: { zdnn_init_pre_transformed_desc( ZDNN_2D, FP32, &buffer->pre_tfm_desc, tensor->ne[1], tensor->ne[0] ); } break; default: { zdnn_init_pre_transformed_desc( ZDNN_NCHW, FP32, &buffer->pre_tfm_desc, tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0] ); } break; } ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc)); ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor)); } //////////////////////////////////////////////////////////////////////////////// // // backend interface // static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) { struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context; for (int i = 0; i < ctx->n_buffers; i++) { struct ggml_backend_zdnn_buffer * buf = &ctx->buffers[i]; // free any extra buffers (e.g., bias) if (buf->extra != nullptr) { zdnn_free_ztensor_buffer(&buf->extra->ztensor); free(buf->extra->data); } zdnn_free_ztensor_buffer(&buf->ztensor); } if (ctx->owned) { free(ctx->all_data); } free(ctx); } static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) { struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context; return ctx->all_data; } static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { if (tensor->view_src != NULL) { assert(tensor->view_src->buffer->buft == buffer->buft); return GGML_STATUS_SUCCESS; } struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context; // Create a dedicated buffer entry for this tensor int tensor_buffer_idx; int bias_buffer_idx; const int64_t tsize = ggml_nbytes(tensor); struct ggml_backend_zdnn_buffer * tensor_buffer; tensor_buffer_idx = ctx->n_buffers; tensor_buffer = &ctx->buffers[tensor_buffer_idx]; tensor_buffer->data = tensor->data; tensor_buffer->size = tsize; snprintf(tensor_buffer->name, sizeof(tensor_buffer->name), "%s", tensor->name); ggml_zdnn_init_tensor(tensor_buffer, tensor); ctx->n_buffers++; if (tensor->op == GGML_OP_MUL_MAT) { struct ggml_backend_zdnn_buffer * bias_buffer; bias_buffer_idx = tensor_buffer_idx + 1; bias_buffer = &ctx->buffers[bias_buffer_idx]; bias_buffer->data = calloc(tensor->ne[0], tensor->ne[0] * sizeof(float)); bias_buffer->size = tensor->ne[0] * sizeof(float); snprintf(bias_buffer->name, sizeof(bias_buffer->name), "%s.bias", tensor->name); ggml_zdnn_init_bias_tensor(bias_buffer, tensor); ctx->n_buffers++; tensor_buffer->extra = bias_buffer; GGML_LOG_INFO("%s: initialized bias tensor '%s' in buffer %d, size = %8.2f MiB\n", __func__, bias_buffer->name, bias_buffer_idx, (float)bias_buffer->size / (1024.0f * 1024.0f)); } GGML_LOG_INFO("%s: initialized tensor '%s' in buffer %d, size = %8.2f MiB\n", __func__, ctx->buffers[tensor_buffer_idx].name, tensor_buffer_idx, (float)tsize / (1024.0f * 1024.0f)); tensor->extra = &ctx->buffers[tensor_buffer_idx]; return GGML_STATUS_SUCCESS; } static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { memset((char *)tensor->data + offset, value, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra; // if extra buffer exists, transform the ztensor with the buffer data. for e.g., bias if (extra->extra) ZDNN_CHECK(zdnn_transform_ztensor(&extra->extra->ztensor, &extra->extra->data)); // for all other data ZDNN_CHECK(zdnn_transform_ztensor(&extra->ztensor, (void *)((char *)tensor->data + offset))); memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra; ZDNN_CHECK(zdnn_transform_origtensor(&extra->ztensor, (void *)((char *)tensor->data + offset))); memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context; memset(ctx->all_data, value, ctx->all_size); } static struct ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = { /* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer, /* .get_base = */ ggml_backend_zdnn_buffer_get_base, /* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor, /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor, /* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor, /* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_zdnn_buffer_clear, /* .reset = */ NULL, }; // // default buffer type // static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return GGML_ZDNN_NAME; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context)); const size_t size_page = sysconf(_SC_PAGESIZE); size_t size_aligned = size; if (size_aligned % size_page != 0) { size_aligned += size_page - (size_aligned % size_page); } struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)buft->device->context; GGML_ASSERT(ctx_dev->zdnn_device != 0); int device = ctx_dev->zdnn_device; GGML_UNUSED(device); ctx->all_data = ggml_aligned_malloc(size_aligned); ctx->all_size = size_aligned; ctx->owned = true; ctx->n_buffers = 1; if (ctx->all_data != NULL) { ctx->buffers[0].data = ctx->all_data; ctx->buffers[0].size = size; } if (size_aligned > 0 && (ctx->all_data == NULL)) { GGML_LOG_ERROR("%s: failed to allocate buffer, size = %8.2f MiB\n", __func__, (float)size_aligned / (1024.0f / 1024.0f)); free(ctx); return NULL; } return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size); } static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 256; GGML_UNUSED(buft); } static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; GGML_UNUSED(buft); } ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = { /* .iface = */ { /* .get_name = */ ggml_backend_zdnn_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, /* .get_max_size = */ NULL, /* .get_alloc_size = */ NULL, /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_zdnn_device, /* .context = */ NULL, }; return &ggml_backend_buffer_type_zdnn; } static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { return "ZDNN_Mapped"; GGML_UNUSED(buft); } static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = { /* .iface = */ { /* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name, /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, /* .get_max_size = */ NULL, /* .get_alloc_size = */ NULL, /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_zdnn_device, /* .context = */ NULL, }; return &ggml_backend_buffer_from_ptr_type_zdnn; } static const char * ggml_backend_zdnn_name(ggml_backend_t backend) { return GGML_ZDNN_NAME; GGML_UNUSED(backend); } static void ggml_backend_zdnn_free(ggml_backend_t backend) { struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context; ggml_aligned_free(ctx, 0); free(backend); } static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { return ggml_zdnn_graph_compute(backend, cgraph); } static struct ggml_backend_i ggml_backend_zdnn_i = { /* .get_name = */ ggml_backend_zdnn_name, /* .free = */ ggml_backend_zdnn_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_zdnn_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; static ggml_guid_t ggml_backend_zdnn_guid(void) { static const char * guid_str = "IBM-ZDNN_ACCELER"; return reinterpret_cast((void *)guid_str); } ggml_backend_t ggml_backend_zdnn_init(void) { ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0); struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend)); * backend = (struct ggml_backend) { /* .guid = */ ggml_backend_zdnn_guid(), /* .iface = */ ggml_backend_zdnn_i, /* .device = */ dev, /* .context = */ ctx, }; return backend; } bool ggml_backend_is_zdnn(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid()); } // // backend device // static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) { return GGML_ZDNN_NAME; GGML_UNUSED(dev); } static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) { return "IBM Z Neural Network Processing Assist (NNPA)"; GGML_UNUSED(dev); } static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { *free = 1; *total = 1; GGML_UNUSED(dev); } static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) { return GGML_BACKEND_DEVICE_TYPE_ACCEL; GGML_UNUSED(dev); } static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_zdnn_device_get_name(dev); props->description = ggml_backend_zdnn_device_get_description(dev); props->type = ggml_backend_zdnn_device_get_type(dev); ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = (struct ggml_backend_dev_caps) { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ true, /* .events = */ false, }; } static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) { struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend)); * backend = (struct ggml_backend) { /* .guid = */ ggml_backend_zdnn_guid(), /* .iface = */ ggml_backend_zdnn_i, /* .device = */ dev, /* .context = */ ctx, }; return backend; GGML_UNUSED(params); } static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) { return ggml_backend_zdnn_buffer_type(); GGML_UNUSED(dev); } static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context)); ctx->all_data = ptr; ctx->all_size = size; ctx->owned = false; ctx->n_buffers = 0; const size_t size_page = sysconf(_SC_PAGESIZE); // page-align the data ptr { const uintptr_t offset = (uintptr_t)ptr % size_page; ptr = (void *)((char *)ptr - offset); size += offset; } size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += size_page - (size_aligned % size_page); } struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context; GGML_ASSERT(ctx_dev->zdnn_device != 0); int device = ctx_dev->zdnn_device; GGML_UNUSED(device); ctx->buffers[ctx->n_buffers].data = ptr; ctx->buffers[ctx->n_buffers].size = size; GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n", __func__, (float)size_aligned / (1024.0f / 1024.0f)); ++ctx->n_buffers; return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size); GGML_UNUSED(max_tensor_size); } static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context; return ggml_zdnn_supports_op(ctx_dev, op); } static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name || buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name; GGML_UNUSED(dev); } static bool ggml_backend_zdnn_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { return false; GGML_UNUSED(dev); GGML_UNUSED(op); } static struct ggml_backend_device_i ggml_backend_zdnn_device_i = { /* .get_name = */ ggml_backend_zdnn_device_get_name, /* .get_description = */ ggml_backend_zdnn_device_get_description, /* .get_memory = */ ggml_backend_zdnn_device_get_memory, /* .get_type = */ ggml_backend_zdnn_device_get_type, /* .get_props = */ ggml_backend_zdnn_device_get_props, /* .init_backend = */ ggml_backend_zdnn_device_init, /* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr, /* .supports_op = */ ggml_backend_zdnn_device_supports_op, /* .supports_buft = */ ggml_backend_zdnn_device_supports_buft, /* .offload_op = */ ggml_backend_zdnn_device_offload_op, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; // // backend registry // static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) { return GGML_ZDNN_NAME; GGML_UNUSED(reg); } static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) { if (!zdnn_is_nnpa_installed()) { return 0; } return 1; GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); return &g_ggml_backend_zdnn_device; GGML_UNUSED(reg); GGML_UNUSED(index); } static struct ggml_backend_feature g_ggml_backend_zdnn_features[] = { // Change once we have proper detections { "NNPA_PARMBLK", "1"}, }; static struct ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) { return g_ggml_backend_zdnn_features; GGML_UNUSED(reg); } static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) { return NULL; GGML_UNUSED(reg); GGML_UNUSED(name); } static struct ggml_backend_reg_i ggml_backend_zdnn_reg_i = { /* .get_name = */ ggml_backend_zdnn_reg_get_name, /* .get_device_count = */ ggml_backend_zdnn_reg_device_count, /* .get_device = */ ggml_backend_zdnn_reg_device_get, /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address, }; static void ggml_zdnn_cleanup(void) { ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main); } ggml_backend_reg_t ggml_backend_zdnn_reg(void) { ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main); atexit(ggml_zdnn_cleanup); { g_ggml_backend_zdnn_reg = (ggml_backend_reg) { /* .api_version = */ GGML_ZDNN_VERSION, /* .iface = */ ggml_backend_zdnn_reg_i, /* .context = */ NULL, }; g_ggml_backend_zdnn_device = (ggml_backend_device) { /* .iface = */ ggml_backend_zdnn_device_i, /* .reg = */ &g_ggml_backend_zdnn_reg, /* .context = */ &g_ggml_ctx_dev_main, }; } return &g_ggml_backend_zdnn_reg; } GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)