Files
llama.cpp/ggml/src/ggml-sycl/norm.cpp
YaelLogic 338074c383 sycl: add RMS_NORM_BACK operation support (#16808)
* sycl: add RMS_NORM_BACK operation support

* sycl: rms_norm_back: add dual reduction paths (FP64 and FP32) and savepoint before further changes

* sycl: add RMS_NORM_BACK support

Implement RMS_NORM_BACK for the SYCL backend using FP32 compensated parallel reduction. Minimal docs updates (ops.md / SYCL.csv).

* revert: restore .gitignore and tools/run/CMakeLists.txt to upstream

* revert: restore tests/CMakeLists.txt to upstream

* sycl: optimize rms_norm_back

* fix: restore SYCL.csv to correct state with RMS_NORM_BACK support

* Update ggml/src/ggml-sycl/norm.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* fix: remove trailing whitespace and add missing newline (EditorConfig)

---------

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-10-29 14:14:39 +08:00

658 lines
26 KiB
C++

#include "norm.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int nthreads = item_ct1.get_local_range(2);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = mean_var;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = 0.f;
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
for (size_t i = 0; i < nreduce; i += 1)
{
mean_var += s_sum[wi_in_sg + i * WARP_SIZE];
}
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
const float mean = mean_var.x() / ncols;
const float var = mean_var.y() / ncols - mean * mean;
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[col] = (x[col] - mean) * inv_std;
}
}
static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
int start = item_ct1.get_group(2) * group_size;
int end = start + group_size;
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
start += item_ct1.get_local_id(2);
size_t nreduce = nwarps / WARP_SIZE;
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:1: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:2: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
float variance = tmp / group_size;
float scale = sycl::rsqrt(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int nrows = item_ct1.get_group_range(2);
const int nchannels = item_ct1.get_group_range(1);
const int sample = item_ct1.get_group(0);
const int channel = item_ct1.get_group(1);
const int row = item_ct1.get_group(2);
const int nthreads = item_ct1.get_local_range(2);
const int tid = item_ct1.get_local_id(2);
const int nwarps = nthreads / WARP_SIZE;
const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});
x += strided_offset;
dst += packed_offset;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
if (wi_in_sg == 0) {
s_sum[sg_id] = tmp;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[wi_in_sg + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float mean = tmp / ncols;
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[col] = scale * x[col];
}
}
static void l2_norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
size_t nreduce = nwarps / WARP_SIZE;
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float scale = sycl::rsqrt(sycl::max(tmp, eps * eps));
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = scale * x[row * ncols + col];
}
}
static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
const float eps, queue_ptr stream, int device) {
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
cgh.parallel_for(
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
}
static void group_norm_f32_sycl(const float* x, float* dst,
const int num_groups, const float eps, const int group_size,
const int ne_elements, queue_ptr stream, int device) {
if (group_size < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(x, dst, group_size, ne_elements,
eps_ct4, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
}
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
const sycl::range<3> global_dims(nsamples, nchannels, nrows);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(global_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
}
static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream, int device) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
l2_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});
});
}
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_TENSOR_UNARY_OP_LOCALS
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
int group_size = dst->src[0]->ne[0] * dst->src[0]->ne[1] * ((dst->src[0]->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, dst->src[0]->ne[0] * dst->src[0]->ne[1] * dst->src[0]->ne[2], main_stream, ctx.device);
}
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}
void ggml_sycl_op_rms_norm_back(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); // dz
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); // x
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float eps = 1e-5f;
std::memcpy(&eps, dst->op_params, sizeof(float));
if (!(eps > 0.0f) || !std::isfinite(eps)) eps = 1e-5f;
const float * g_base = static_cast<const float *>(dst->src[0]->data); // dz
const float * x_base = static_cast<const float *>(dst->src[1]->data); // x
float * dx_base = static_cast< float *>(dst->data);
const int64_t D = dst->ne[0];
const int64_t n1 = dst->ne[1], n2 = dst->ne[2], n3 = dst->ne[3]; (void) n3;
const int64_t N = ggml_nrows(dst);
if (D == 0 || N == 0) return;
const ggml_tensor *G = dst->src[0];
const ggml_tensor *X = dst->src[1];
const int ts = (int) ggml_type_size(X->type);
GGML_ASSERT((size_t) X->nb[0] == (size_t) ts);
GGML_ASSERT((size_t) G->nb[0] == (size_t) ts);
GGML_ASSERT((size_t) dst->nb[0] == (size_t) ts);
const int64_t xs1 = X->nb[1] / ts, xs2 = X->nb[2] / ts, xs3 = X->nb[3] / ts;
const int64_t gs1 = G->nb[1] / ts, gs2 = G->nb[2] / ts, gs3 = G->nb[3] / ts;
const int64_t ds1 = dst->nb[1] / ts, ds2 = dst->nb[2] / ts, ds3 = dst->nb[3] / ts;
dpct::queue_ptr q = ctx.stream();
// work-group size: multiple of WARP_SIZE, capped by device and 256, and not larger than D
const int device_max_wg = ggml_sycl_info().max_work_group_sizes[ctx.device];
auto roundup = [](int v, int m) { return ((v + m - 1) / m) * m; };
int wg_cap = 256;
if (device_max_wg > 0) wg_cap = std::min(wg_cap, device_max_wg);
int WG = std::max(WARP_SIZE, std::min(roundup((int)std::min<int64_t>(D, wg_cap), WARP_SIZE), wg_cap));
// FP32 path: per-thread compensated accumulation + hierarchical reduction
q->submit([&](sycl::handler &cgh) {
const int nwarps_loc = std::max(1, WG / WARP_SIZE);
// store one partial value per warp (xx and xg) for cross-warp reduction
auto l_xx = sycl::local_accessor<sycl::float2, 1>(sycl::range<1>(nwarps_loc), cgh);
auto l_xg = sycl::local_accessor<sycl::float2, 1>(sycl::range<1>(nwarps_loc), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, N) * sycl::range<3>(1, 1, WG),
sycl::range<3>(1, 1, WG)),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const int row = item_ct1.get_group(2);
const int tid = item_ct1.get_local_id(2);
const int64_t i1 = row % n1;
const int64_t i2 = (row / n1) % n2;
const int64_t i3 = row / (n1 * n2);
const float *__restrict x_row = x_base + i3 * xs3 + i2 * xs2 + i1 * xs1;
const float *__restrict g_row = g_base + i3 * gs3 + i2 * gs2 + i1 * gs1;
float *__restrict d_row = dx_base + i3 * ds3 + i2 * ds2 + i1 * ds1;
// per-thread accumulation (compensated by default)
float sum_xx = 0.f, sum_xg = 0.f;
#ifndef GGML_SYCL_RMS_BACK_FAST
float c_xx = 0.f, c_xg = 0.f;
#endif
for (int64_t col = tid; col < D; col += WG) {
const float xv = x_row[col];
const float gv = g_row[col];
#ifdef GGML_SYCL_RMS_BACK_FAST
sum_xx += xv * xv;
sum_xg += xv * gv;
#else
float y1 = xv * xv - c_xx;
float t1 = sum_xx + y1;
c_xx = (t1 - sum_xx) - y1;
sum_xx = t1;
float y2 = xv * gv - c_xg;
float t2 = sum_xg + y2;
c_xg = (t2 - sum_xg) - y2;
sum_xg = t2;
#endif
}
// warp-level reduction
sycl::float2 xx = sycl::float2(sum_xx,
#ifndef GGML_SYCL_RMS_BACK_FAST
c_xx
#else
0.f
#endif
);
sycl::float2 xg = sycl::float2(sum_xg,
#ifndef GGML_SYCL_RMS_BACK_FAST
c_xg
#else
0.f
#endif
);
xx = warp_reduce_sum(xx, item_ct1);
xg = warp_reduce_sum(xg, item_ct1);
// cross-warp reduction using local memory (single barrier)
const auto sub_group = item_ct1.get_sub_group();
const auto sg_id = sub_group.get_group_linear_id();
const auto wi_in_sg = sub_group.get_local_linear_id();
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
sycl::float2 xx_total = xx;
sycl::float2 xg_total = xg;
if (nwarps > 1) {
if (wi_in_sg == 0) {
l_xx[sg_id] = xx;
l_xg[sg_id] = xg;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (sg_id == 0) {
const unsigned wi_u = wi_in_sg;
sycl::float2 xx_first = (wi_u < static_cast<unsigned>(nwarps)) ? l_xx[wi_u] : sycl::float2(0.f, 0.f);
sycl::float2 xg_first = (wi_u < static_cast<unsigned>(nwarps)) ? l_xg[wi_u] : sycl::float2(0.f, 0.f);
xx_total = warp_reduce_sum(xx_first, item_ct1);
xg_total = warp_reduce_sum(xg_first, item_ct1);
} else {
// other subgroups keep their local totals; they'll be ignored
xx_total = xx;
xg_total = xg;
}
// ensure all threads see the first-subgroup result via broadcast below
}
// compute inv_r and coeff once per row and broadcast to the whole work-group
float inv_r = 0.f;
float coeff = 0.f;
if (tid == 0) {
const float sum_xx_f = xx_total.x() + xx_total.y();
const float sum_xdz_f = xg_total.x() + xg_total.y();
const float mean_eps = sum_xx_f / (float) D + eps;
const float sum_eps = sum_xx_f + eps * (float) D;
inv_r = sycl::rsqrt(mean_eps);
coeff = -sum_xdz_f / sum_eps;
}
inv_r = sycl::group_broadcast(item_ct1.get_group(), inv_r);
coeff = sycl::group_broadcast(item_ct1.get_group(), coeff);
for (int64_t col = tid; col < D; col += WG) {
d_row[col] = (g_row[col] + coeff * x_row[col]) * inv_r;
}
});
});
}
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
l2_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
}