#include "norm.hpp" #include "ggml-sycl/common.hpp" #include "ggml-sycl/presets.hpp" static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) { const int nrows = item_ct1.get_group_range(2); const int nchannels = item_ct1.get_group_range(1); const int nthreads = item_ct1.get_local_range(2); const int sample = item_ct1.get_group(0); const int channel = item_ct1.get_group(1); const int row = item_ct1.get_group(2); const int tid = item_ct1.get_local_id(2); const int nwarps = nthreads / WARP_SIZE; const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row}); const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row}); x += strided_offset; dst += packed_offset; sycl::float2 mean_var = sycl::float2(0.f, 0.f); for (int col = tid; col < ncols; col += block_size) { const float xi = x[col]; mean_var.x() += xi; mean_var.y() += xi * xi; } // sum up partial sums mean_var = warp_reduce_sum(mean_var, item_ct1); if (block_size > WARP_SIZE) { const auto sub_group = item_ct1.get_sub_group(); const auto sg_id = sub_group.get_group_linear_id(); const auto wi_in_sg = sub_group.get_local_linear_id(); if (wi_in_sg == 0) { s_sum[sg_id] = mean_var; } item_ct1.barrier(sycl::access::fence_space::local_space); mean_var = 0.f; const size_t nreduce = ceil_div(nwarps, WARP_SIZE); for (size_t i = 0; i < nreduce; i += 1) { mean_var += s_sum[wi_in_sg + i * WARP_SIZE]; } mean_var = warp_reduce_sum(mean_var, item_ct1); } const float mean = mean_var.x() / ncols; const float var = mean_var.y() / ncols - mean * mean; const float inv_std = sycl::rsqrt(var + eps); for (int col = tid; col < ncols; col += block_size) { dst[col] = (x[col] - mean) * inv_std; } } static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { int start = item_ct1.get_group(2) * group_size; int end = start + group_size; const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; start += item_ct1.get_local_id(2); size_t nreduce = nwarps / WARP_SIZE; if (end >= ne_elements) { end = ne_elements; } float tmp = 0.0f; // partial sum for thread in warp for (int j = start; j < end; j += block_size) { tmp += x[j]; } tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:1: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:54: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } float mean = tmp / group_size; tmp = 0.0f; for (int j = start; j < end; j += block_size) { float xi = x[j] - mean; dst[j] = xi; tmp += xi * xi; } tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:2: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:55: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } float variance = tmp / group_size; float scale = sycl::rsqrt(variance + eps); for (int j = start; j < end; j += block_size) { dst[j] *= scale; } } static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { const int nrows = item_ct1.get_group_range(2); const int nchannels = item_ct1.get_group_range(1); const int sample = item_ct1.get_group(0); const int channel = item_ct1.get_group(1); const int row = item_ct1.get_group(2); const int nthreads = item_ct1.get_local_range(2); const int tid = item_ct1.get_local_id(2); const int nwarps = nthreads / WARP_SIZE; const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row}); const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row}); x += strided_offset; dst += packed_offset; float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { const float xi = x[col]; tmp += xi * xi; } // sum up partial sums tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { const auto sub_group = item_ct1.get_sub_group(); const auto sg_id = sub_group.get_group_linear_id(); const auto wi_in_sg = sub_group.get_local_linear_id(); if (wi_in_sg == 0) { s_sum[sg_id] = tmp; } item_ct1.barrier(sycl::access::fence_space::local_space); const size_t nreduce = ceil_div(nwarps, WARP_SIZE); tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[wi_in_sg + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } const float mean = tmp / ncols; const float scale = sycl::rsqrt(mean + eps); for (int col = tid; col < ncols; col += block_size) { dst[col] = scale * x[col]; } } static void l2_norm_f32(const float* x, float* dst, const int ncols, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); const int tid = item_ct1.get_local_id(2); const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { const float xi = x[row * ncols + col]; tmp += xi * xi; } // sum up partial sums tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } /* DPCT1118:3: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ item_ct1.barrier(sycl::access::fence_space::local_space); size_t nreduce = nwarps / WARP_SIZE; tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } const float scale = sycl::rsqrt(sycl::max(tmp, eps * eps)); for (int col = tid; col < ncols; col += block_size) { dst[row * ncols + col] = scale * x[row * ncols + col]; } } static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples, const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) { const sycl::range<3> global_dims(nsamples, nchannels, nrows); GGML_ASSERT(ncols % WARP_SIZE == 0); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = ggml_sycl_info().max_work_group_sizes[device]; assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:17: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1( sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } } static void group_norm_f32_sycl(const float* x, float* dst, const int num_groups, const float eps, const int group_size, const int ne_elements, queue_ptr stream, int device) { if (group_size < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { const float eps_ct4 = eps; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { group_norm_f32( x, dst, group_size, ne_elements, eps_ct4, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = ggml_sycl_info().max_work_group_sizes[device]; assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:18: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); const float eps_ct4 = eps; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { group_norm_f32(x, dst, group_size, ne_elements, eps_ct4, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } } static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples, const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) { GGML_ASSERT(ncols % WARP_SIZE == 0); // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); const sycl::range<3> global_dims(nsamples, nchannels, nrows); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = ggml_sycl_info().max_work_group_sizes[device]; assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:19: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } } static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const float eps, queue_ptr stream, int device) { GGML_ASSERT(ncols % WARP_SIZE == 0); // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { l2_norm_f32(x, dst, ncols, eps, item_ct1, nullptr, WARP_SIZE); }); }); } else { const int work_group_size = ggml_sycl_info().max_work_group_sizes[device]; assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0); const sycl::range<3> block_dims(1, 1, work_group_size); /* DPCT1049:19: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { l2_norm_f32(x, dst, ncols, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } } void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_TENSOR_UNARY_OP_LOCALS dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float * src0_dd = static_cast(dst->src[0]->data); float * dst_dd = static_cast(dst->data); float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_ASSERT(eps >= 0.0f); const size_t ts0 = ggml_type_size(src0->type); GGML_ASSERT(nb00 == ts0); const int64_t s01 = nb01 / ts0; const int64_t s02 = nb02 / ts0; const int64_t s03 = nb03 / ts0; norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device); } void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); int num_groups = dst->op_params[0]; dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float * src0_dd = static_cast(dst->src[0]->data); float * dst_dd = static_cast(dst->data); float eps; memcpy(&eps, dst->op_params + 1, sizeof(float)); int group_size = dst->src[0]->ne[0] * dst->src[0]->ne[1] * ((dst->src[0]->ne[2] + num_groups - 1) / num_groups); group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, dst->src[0]->ne[0] * dst->src[0]->ne[1] * dst->src[0]->ne[2], main_stream, ctx.device); } void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float * src0_dd = static_cast(dst->src[0]->data); float * dst_dd = static_cast(dst->data); float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_TENSOR_UNARY_OP_LOCALS const size_t ts0 = ggml_type_size(src0->type); GGML_ASSERT(nb00 == ts0); const int64_t s01 = nb01 / ts0; const int64_t s02 = nb02 / ts0; const int64_t s03 = nb03 / ts0; rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device); } void ggml_sycl_op_rms_norm_back(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2); GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); // dz GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); // x GGML_ASSERT(dst->type == GGML_TYPE_F32); float eps = 1e-5f; std::memcpy(&eps, dst->op_params, sizeof(float)); if (!(eps > 0.0f) || !std::isfinite(eps)) eps = 1e-5f; const float * g_base = static_cast(dst->src[0]->data); // dz const float * x_base = static_cast(dst->src[1]->data); // x float * dx_base = static_cast< float *>(dst->data); const int64_t D = dst->ne[0]; const int64_t n1 = dst->ne[1], n2 = dst->ne[2], n3 = dst->ne[3]; (void) n3; const int64_t N = ggml_nrows(dst); if (D == 0 || N == 0) return; const ggml_tensor *G = dst->src[0]; const ggml_tensor *X = dst->src[1]; const int ts = (int) ggml_type_size(X->type); GGML_ASSERT((size_t) X->nb[0] == (size_t) ts); GGML_ASSERT((size_t) G->nb[0] == (size_t) ts); GGML_ASSERT((size_t) dst->nb[0] == (size_t) ts); const int64_t xs1 = X->nb[1] / ts, xs2 = X->nb[2] / ts, xs3 = X->nb[3] / ts; const int64_t gs1 = G->nb[1] / ts, gs2 = G->nb[2] / ts, gs3 = G->nb[3] / ts; const int64_t ds1 = dst->nb[1] / ts, ds2 = dst->nb[2] / ts, ds3 = dst->nb[3] / ts; dpct::queue_ptr q = ctx.stream(); // work-group size: multiple of WARP_SIZE, capped by device and 256, and not larger than D const int device_max_wg = ggml_sycl_info().max_work_group_sizes[ctx.device]; auto roundup = [](int v, int m) { return ((v + m - 1) / m) * m; }; int wg_cap = 256; if (device_max_wg > 0) wg_cap = std::min(wg_cap, device_max_wg); int WG = std::max(WARP_SIZE, std::min(roundup((int)std::min(D, wg_cap), WARP_SIZE), wg_cap)); // FP32 path: per-thread compensated accumulation + hierarchical reduction q->submit([&](sycl::handler &cgh) { const int nwarps_loc = std::max(1, WG / WARP_SIZE); // store one partial value per warp (xx and xg) for cross-warp reduction auto l_xx = sycl::local_accessor(sycl::range<1>(nwarps_loc), cgh); auto l_xg = sycl::local_accessor(sycl::range<1>(nwarps_loc), cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, N) * sycl::range<3>(1, 1, WG), sycl::range<3>(1, 1, WG)), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { const int row = item_ct1.get_group(2); const int tid = item_ct1.get_local_id(2); const int64_t i1 = row % n1; const int64_t i2 = (row / n1) % n2; const int64_t i3 = row / (n1 * n2); const float *__restrict x_row = x_base + i3 * xs3 + i2 * xs2 + i1 * xs1; const float *__restrict g_row = g_base + i3 * gs3 + i2 * gs2 + i1 * gs1; float *__restrict d_row = dx_base + i3 * ds3 + i2 * ds2 + i1 * ds1; // per-thread accumulation (compensated by default) float sum_xx = 0.f, sum_xg = 0.f; #ifndef GGML_SYCL_RMS_BACK_FAST float c_xx = 0.f, c_xg = 0.f; #endif for (int64_t col = tid; col < D; col += WG) { const float xv = x_row[col]; const float gv = g_row[col]; #ifdef GGML_SYCL_RMS_BACK_FAST sum_xx += xv * xv; sum_xg += xv * gv; #else float y1 = xv * xv - c_xx; float t1 = sum_xx + y1; c_xx = (t1 - sum_xx) - y1; sum_xx = t1; float y2 = xv * gv - c_xg; float t2 = sum_xg + y2; c_xg = (t2 - sum_xg) - y2; sum_xg = t2; #endif } // warp-level reduction sycl::float2 xx = sycl::float2(sum_xx, #ifndef GGML_SYCL_RMS_BACK_FAST c_xx #else 0.f #endif ); sycl::float2 xg = sycl::float2(sum_xg, #ifndef GGML_SYCL_RMS_BACK_FAST c_xg #else 0.f #endif ); xx = warp_reduce_sum(xx, item_ct1); xg = warp_reduce_sum(xg, item_ct1); // cross-warp reduction using local memory (single barrier) const auto sub_group = item_ct1.get_sub_group(); const auto sg_id = sub_group.get_group_linear_id(); const auto wi_in_sg = sub_group.get_local_linear_id(); const int nthreads = item_ct1.get_local_range(2); const int nwarps = nthreads / WARP_SIZE; sycl::float2 xx_total = xx; sycl::float2 xg_total = xg; if (nwarps > 1) { if (wi_in_sg == 0) { l_xx[sg_id] = xx; l_xg[sg_id] = xg; } item_ct1.barrier(sycl::access::fence_space::local_space); if (sg_id == 0) { const unsigned wi_u = wi_in_sg; sycl::float2 xx_first = (wi_u < static_cast(nwarps)) ? l_xx[wi_u] : sycl::float2(0.f, 0.f); sycl::float2 xg_first = (wi_u < static_cast(nwarps)) ? l_xg[wi_u] : sycl::float2(0.f, 0.f); xx_total = warp_reduce_sum(xx_first, item_ct1); xg_total = warp_reduce_sum(xg_first, item_ct1); } else { // other subgroups keep their local totals; they'll be ignored xx_total = xx; xg_total = xg; } // ensure all threads see the first-subgroup result via broadcast below } // compute inv_r and coeff once per row and broadcast to the whole work-group float inv_r = 0.f; float coeff = 0.f; if (tid == 0) { const float sum_xx_f = xx_total.x() + xx_total.y(); const float sum_xdz_f = xg_total.x() + xg_total.y(); const float mean_eps = sum_xx_f / (float) D + eps; const float sum_eps = sum_xx_f + eps * (float) D; inv_r = sycl::rsqrt(mean_eps); coeff = -sum_xdz_f / sum_eps; } inv_r = sycl::group_broadcast(item_ct1.get_group(), inv_r); coeff = sycl::group_broadcast(item_ct1.get_group(), coeff); for (int64_t col = tid; col < D; col += WG) { d_row[col] = (g_row[col] + coeff * x_row[col]) * inv_r; } }); }); } void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const int64_t ne00 = dst->src[0]->ne[0]; const int64_t nrows = ggml_nrows(dst->src[0]); const float * src0_dd = static_cast(dst->src[0]->data); float * dst_dd = static_cast(dst->data); float eps; memcpy(&eps, dst->op_params, sizeof(float)); l2_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device); }