* refactor to support soft_max_ext
* fix error and support soft_max_back
* rm unused functions
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* metal : better unroll in the FA kernels
* metal : index FA blocks
* tests : restore [no ci]
* metal : prevent division by zero in FA kernels
* metal : fix -INF detection logic
* Add profiling
* More detailed profiling
* Rework command submission to avoid global locks
* Update wait handling
* try new method of waiting on futures
* Add serializing of command submission in some cases
* Add new pool for timestamp queries and clean up logging
* Serialize command submission in CI and leave a TODO note
* Update webgpu CI
* Add myself as WebGPU codeowner
* Deadlock avoidance
* Leave WebGPU/Vulkan CI serialized
* Fix divide by 0
* Fix logic in division by inflight_threads
* Update CODEOWNERS and remove serialize submit option
* metal : pad K, V and Mask when needed
* cont : simplify
* cuda : add TODO about KV padding requirement
* metal : add comments
* metal : remove mask padding requirement
* tests : add -INF blocks to the KQ mask in the FA tests
* cont : bump -INF block size to 64
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* ggml : prevent division by zero in FA CPU op
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* metal : ssm_scan minor opts
* metal : get_rows optimize
* metal : cpy optimize
* metal : ssm_conv opt
* metal : ssm_scan simplify
* metal : ssm_Scan opt
This commit updates the leftover handling in ggml_vec_scale_f32.
The motivation for this is that the code currently incorrectly assumes
there would be fewer than ggml_f32_epr leftover elements. However,
since the main loop processes 2*ggml_f32_epr elements per iteration
, there can be up to (2*ggml_f32_epr - 1) leftover elements.
The original single-pass leftover code could only process ggml_f32_epr
elements, leaving some elements unscaled.
Example scenario with 256-bit SVE:
```
ggml_f32_epr = 8 (elements per register)
ggml_f32_step = 16 (two registers per iteration)
n = 25
np = 16
leftovers = 9 elements (16-24)
Original : processes only elements 16-23, misses element 24
This commit : loop processes elements 16-23, then element 24
```
Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630
* rpc : add support for multiple devices
Allow rpc-server to expose multiple devices from a single endpoint.
Change RPC protocol to include device identifier where needed.
closes: #15210
* fixes
* use ggml_backend_reg_t
* address review comments
* fix llama-bench backend report
* address review comments, change device naming
* fix cmd order
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times
* support dep-files so shaders are recompiled if their included files change
* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled
* vulkan : only write embedded shader .hpp/.cpp when they change
* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier
* fix hang in vulkan-shaders-gen when there are compilation errors
* early out did not decrement compile_count
* clean up
* fix glslc integer dot product test
* unconditionally write the embedded shader cpp output
* replace output filepath in generated dep-files to match output in CMakeLists
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE
Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.
For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.
Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.
With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.
* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
* First attempt
* No permute during convert (fixes qk tensors), proper norm application.
* RoPE = NeoX
* Coherence!
* Migrate xielu params from tensors to hyperparameters
* Simple CUDA kernel
* Revert stupid LLM refactorings
* Chat template support
* configchecker / flake8 errors
* Reorder unary.cu
* I do conclude that LLMs are, in fact, stupid.
* Fix after merge
* Final newline
* Make xIELU an UNARY_OP
* Final newline
* Correctly account for parameter shift
* Argh.
* Update ggml/src/ggml-cpu/unary-ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Refactor: remove unused methods, inline and factorize softplus, add const modifiers
* Revert CUDA changes, implement xIELU as a separate OP
* Pesky newline
* Add float2half / half2float for F16 inputs/outputs
* CUDA variants, attempt 2
* Actually, attempt 3
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Missing convert header
* Proper formula and reference for xIELU in the comments.
* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Add tensor mappings for Apertus to global list instead
* Fix lazy on scalars
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add comment about the constraints on positive/negative alpha
* Change `softplus` to `ggml_softplus`
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0
rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA
* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
* Work on rope
* Simplify inplace operation generation and combine mul/add generation
* Work on rope variants
* implement neox rope
* rope complete
* Add sub,div,glu operators
* implement scale op
* Update cpy shader to handle cont/more types
* formatting
* Update test vars printing for rope,rms_norm
* Avoid ROPE hardcoded constants
* Add TODO to change ROPE constants to enum
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix TODO comment
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
* vulkan: 64-bit im2col
Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.
* fix validation error for large im2col
* metal : support mul_mm with src1->type == GGML_TYPE_F16
* metal : support mul_mm_id with src1->type == GGML_TYPE_F16
[no ci]
* metal : mul_mm support ne00 % 32 != 0
* metal : support mul_mm_id with ne00 % 32 != 0
* cont : remove unnecessary unrolls
* cont : simplify data loading
* metal : optimize mul_mm when output bounds checks are not needed
* vulkan: handle mat_mul with A matrix > 4GB
This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.
Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.
* build fixes
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32
This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.
My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32
* Review: refactor if statement