mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	metal : support tensors in mul_mm_id
This commit is contained in:
		| @@ -8207,9 +8207,9 @@ kernel void kernel_mul_mm( | |||||||
|     auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK,  NR0)); |     auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK,  NR0)); | ||||||
|     auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK )); |     auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK )); | ||||||
|  |  | ||||||
|     constexpr auto desc = mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate); |     mpp::tensor_ops::matmul2d< | ||||||
|  |         mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate), | ||||||
|     mpp::tensor_ops::matmul2d<desc, execution_simdgroups<4>> mm; |         execution_simdgroups<4>> mm; | ||||||
|  |  | ||||||
|     auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); |     auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); | ||||||
| #endif | #endif | ||||||
| @@ -8522,31 +8522,63 @@ kernel void kernel_mul_mm_id( | |||||||
|         ushort tiitg[[thread_index_in_threadgroup]], |         ushort tiitg[[thread_index_in_threadgroup]], | ||||||
|         ushort tiisg[[thread_index_in_simdgroup]], |         ushort tiisg[[thread_index_in_simdgroup]], | ||||||
|         ushort sgitg[[simdgroup_index_in_threadgroup]]) { |         ushort sgitg[[simdgroup_index_in_threadgroup]]) { | ||||||
|  |  | ||||||
|     threadgroup S0 * sa = (threadgroup S0 *)(shmem); |     threadgroup S0 * sa = (threadgroup S0 *)(shmem); | ||||||
|     threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096); |     threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096); | ||||||
|  |  | ||||||
|     const int r0 = tgpig.y; |     threadgroup float * sc = (threadgroup float *)(shmem); | ||||||
|     const int r1 = tgpig.x; |  | ||||||
|  |     constexpr int NR0 = 64; | ||||||
|  |     constexpr int NR1 = 32; | ||||||
|  |  | ||||||
|  |     constexpr int NK  = 32; | ||||||
|  |     constexpr int NL0 = NK/16; | ||||||
|  |     constexpr int NL1 = NK/8; | ||||||
|  |  | ||||||
|     const int im = tgpig.z; // expert |     const int im = tgpig.z; // expert | ||||||
|  |     const int r0 = tgpig.y*NR0; | ||||||
|  |     const int r1 = tgpig.x*NR1; | ||||||
|  |  | ||||||
|     device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe); |     device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe); | ||||||
|     device const int32_t  * ids_i32 = (device const int32_t  *) (hids); |     device const int32_t  * ids_i32 = (device const int32_t  *) (hids); | ||||||
|  |  | ||||||
|     const int32_t neh1 = tpe_u32[im]; |     const int32_t neh1 = tpe_u32[im]; | ||||||
|  |  | ||||||
|     if (r1*BLOCK_SIZE_N >= neh1) { |     if (r1 >= neh1) { | ||||||
|         return; |         return; | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     // if this block is of 64x32 shape or smaller |     // if this block is of 64x32 shape or smaller | ||||||
|     const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; |     const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0; | ||||||
|     const short n_cols = (    neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (    neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; |     const short nr1 = (    neh1 - r1 < NR1) ? (    neh1 - r1) : NR1; | ||||||
|  |  | ||||||
|     // a thread shouldn't load data outside of the matrix |     // a thread shouldn't load data outside of the matrix | ||||||
|     const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; |     const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63 | ||||||
|     const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; |     const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31 | ||||||
|  |  | ||||||
|  |     const short il0 = (tiitg % NL0); | ||||||
|  |  | ||||||
|  |     short il = il0; | ||||||
|  |  | ||||||
|  |     const int id = ids_i32[im*args.ne21 + r1 + lr1]; | ||||||
|  |  | ||||||
|  |     const short i11 = (id % args.ne20) % args.ne11; | ||||||
|  |     const short i12 = (id / args.ne20); | ||||||
|  |     const short i13 = 0; | ||||||
|  |  | ||||||
|  |     const uint64_t offset0 = im*args.nb02 + i13*args.nb03; | ||||||
|  |     const short    offset1 = il0/nl; | ||||||
|  |  | ||||||
|  |     device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1; | ||||||
|  |  | ||||||
|  |     const short iy = 8*(tiitg % NL1); | ||||||
|  |  | ||||||
|  |     device const T1 * y = (device const T1 *)(src1 | ||||||
|  |         + args.nb13*i13 | ||||||
|  |         + args.nb12*i12 | ||||||
|  |         + args.nb11*i11 | ||||||
|  |         + args.nb10*iy); | ||||||
|  |  | ||||||
|  | #ifndef GGML_METAL_HAS_TENSOR | ||||||
|     S0_8x8 ma[4]; |     S0_8x8 ma[4]; | ||||||
|     S1_8x8 mb[2]; |     S1_8x8 mb[2]; | ||||||
|  |  | ||||||
| @@ -8555,39 +8587,36 @@ kernel void kernel_mul_mm_id( | |||||||
|     for (short i = 0; i < 8; i++){ |     for (short i = 0; i < 8; i++){ | ||||||
|         mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f); |         mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f); | ||||||
|     } |     } | ||||||
|  | #else | ||||||
|  |     auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK,  NR0)); | ||||||
|  |     auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK )); | ||||||
|  |  | ||||||
|     short il = (tiitg % THREAD_PER_ROW); |     mpp::tensor_ops::matmul2d< | ||||||
|  |         mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate), | ||||||
|  |         execution_simdgroups<4>> mm; | ||||||
|  |  | ||||||
|     const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col]; |     auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); | ||||||
|  | #endif | ||||||
|  |  | ||||||
|     const short i11 = (id % args.ne20) % args.ne11; |     for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) { | ||||||
|     const short i12 = (id / args.ne20); | #ifndef GGML_METAL_HAS_TENSOR | ||||||
|     const short i13 = 0; |  | ||||||
|  |  | ||||||
|     const uint64_t offset0 = im*args.nb02 + i13*args.nb03; |  | ||||||
|     const short    offset1 = il/nl; |  | ||||||
|  |  | ||||||
|     device const block_q * x = (device const block_q *)(src0 |  | ||||||
|         + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1; |  | ||||||
|  |  | ||||||
|     const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)); |  | ||||||
|  |  | ||||||
|     device const T1 * y = (device const T1 *)(src1 |  | ||||||
|         + args.nb13*i13 |  | ||||||
|         + args.nb12*i12 |  | ||||||
|         + args.nb11*i11 |  | ||||||
|         + args.nb10*iy); |  | ||||||
|  |  | ||||||
|     for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) { |  | ||||||
|         // load data and store to threadgroup memory |         // load data and store to threadgroup memory | ||||||
|         if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) { |         if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) { | ||||||
|             threadgroup_barrier(mem_flags::mem_threadgroup); |             threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|             // no need for dequantization |             // no need for dequantization | ||||||
|             for (short i = 0; i < 16; i++) { |             for (short i = 0; i < 16; i++) { | ||||||
|                 *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ |                 const short sx = 2*il0 + i/8; | ||||||
|                 +                     (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ |                 const short sy = (tiitg/NL0)/8; | ||||||
|                 +                     (tiitg/THREAD_PER_ROW)%8  + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0; |  | ||||||
|  |               //const short lx = i%8; | ||||||
|  |               //const short ly = (tiitg/NL0)%8; | ||||||
|  |                 const short lx = (tiitg/NL0)%8; | ||||||
|  |                 const short ly = i%8; | ||||||
|  |  | ||||||
|  |                 const short ib = 8*sx + sy; | ||||||
|  |  | ||||||
|  |                 *(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0; | ||||||
|             } |             } | ||||||
|         } else { |         } else { | ||||||
|             S0_4x4 temp_a; |             S0_4x4 temp_a; | ||||||
| @@ -8596,85 +8625,188 @@ kernel void kernel_mul_mm_id( | |||||||
|             threadgroup_barrier(mem_flags::mem_threadgroup); |             threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|             FOR_UNROLL (short i = 0; i < 16; i++) { |             FOR_UNROLL (short i = 0; i < 16; i++) { | ||||||
|                 *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ |                 const short sx = 2*il0 + i/8; | ||||||
|                 +                     (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ |                 const short sy = (tiitg/NL0)/8; | ||||||
|                 +                     (tiitg/THREAD_PER_ROW)%8  + (i&7)*8) = temp_a[i/4][i%4]; |  | ||||||
|  |               //const short lx = i%8; | ||||||
|  |               //const short ly = (tiitg/NL0)%8; | ||||||
|  |                 const short lx = (tiitg/NL0)%8; | ||||||
|  |                 const short ly = i%8; | ||||||
|  |  | ||||||
|  |                 const short ib = 8*sx + sy; | ||||||
|  |  | ||||||
|  |                 // NOTE: this is massively slower.. WTF? | ||||||
|  |                 //sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4]; | ||||||
|  |  | ||||||
|  |                 *(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4]; | ||||||
|             } |             } | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         if (FC_mul_mm_bc_inp) { |         if (FC_mul_mm_bc_inp) { | ||||||
|             for (short i = 0; i < 8; ++i) { |             for (short i = 0; i < 8; ++i) { | ||||||
|                 sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0; |                 const short sx = (tiitg%NL1); | ||||||
|  |                 const short sy = (tiitg/NL1)/8; | ||||||
|  |  | ||||||
|  |                 const short lx = i; | ||||||
|  |                 const short ly = (tiitg/NL1)%8; | ||||||
|  |               //const short lx = (tiitg/NL1)%8; | ||||||
|  |               //const short ly = i; | ||||||
|  |  | ||||||
|  |                 const short ib = 4*sx + sy; | ||||||
|  |  | ||||||
|  |                 *(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0; | ||||||
|             } |             } | ||||||
|         } else { |         } else { | ||||||
|             *(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y)); |             const short sx = (tiitg%NL1); | ||||||
|         } |             const short sy = (tiitg/NL1)/8; | ||||||
|  |  | ||||||
|         il = (il + 2 < nl) ? il + 2 : il % 2; |             const short dx = sx; | ||||||
|         x  = (il < 2) ? x + (2 + nl - 1)/nl : x; |             const short dy = sy; | ||||||
|         y += BLOCK_SIZE_K; |  | ||||||
|  |             const short ly = (tiitg/NL1)%8; | ||||||
|  |  | ||||||
|  |             const short ib = 4*sx + sy; | ||||||
|  |  | ||||||
|  |             *(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y)); | ||||||
|  |         } | ||||||
|  | #else | ||||||
|  |         // load data and store to threadgroup memory | ||||||
|  |         if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) { | ||||||
|  |             threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|  |             // no need for dequantization | ||||||
|  |             for (short i = 0; i < 16; i++) { | ||||||
|  |                 const short sx = 2*il0 + i/8; | ||||||
|  |                 const short sy = (tiitg/NL0)/8; | ||||||
|  |  | ||||||
|  |                 const short lx = i%8; | ||||||
|  |                 const short ly = (tiitg/NL0)%8; | ||||||
|  |                 //const short lx = (tiitg/NL0)%8; | ||||||
|  |                 //const short ly = i%8; | ||||||
|  |  | ||||||
|  |                 *(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0; | ||||||
|  |             } | ||||||
|  |         } else { | ||||||
|  |             S0_4x4 temp_a; | ||||||
|  |             dequantize_func(x, il, temp_a); | ||||||
|  |  | ||||||
|             threadgroup_barrier(mem_flags::mem_threadgroup); |             threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|         // load matrices from threadgroup memory and conduct outer products |             FOR_UNROLL (short i = 0; i < 16; i++) { | ||||||
|         threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2)); |                 const short sx = 2*il0 + i/8; | ||||||
|         threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2)); |                 const short sy = (tiitg/NL0)/8; | ||||||
|  |  | ||||||
|         #pragma unroll(4) |                 const short lx = i%8; | ||||||
|         for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) { |                 const short ly = (tiitg/NL0)%8; | ||||||
|             #pragma unroll(4) |                 //const short lx = (tiitg/NL0)%8; | ||||||
|             for (short i = 0; i < 4; i++) { |                 //const short ly = i%8; | ||||||
|                 simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); |  | ||||||
|  |                 *(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4]; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         if (FC_mul_mm_bc_inp) { | ||||||
|  |             for (short i = 0; i < 8; ++i) { | ||||||
|  |                 const short sx = (tiitg%NL1); | ||||||
|  |                 const short sy = (tiitg/NL1)/8; | ||||||
|  |  | ||||||
|  |                 const short lx = i; | ||||||
|  |                 const short ly = (tiitg/NL1)%8; | ||||||
|  |                 //const short lx = (tiitg/NL1)%8; | ||||||
|  |                 //const short ly = i; | ||||||
|  |  | ||||||
|  |                 *(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0; | ||||||
|  |             } | ||||||
|  |         } else { | ||||||
|  |             const short sx = (tiitg%NL1); | ||||||
|  |             const short sy = (tiitg/NL1)/8; | ||||||
|  |  | ||||||
|  |             //const short lx = i; | ||||||
|  |             const short ly = (tiitg/NL1)%8; | ||||||
|  |             //const short lx = (tiitg/NL1)%8; | ||||||
|  |             //const short ly = i; | ||||||
|  |  | ||||||
|  |             *(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y)); | ||||||
|  |         } | ||||||
|  | #endif | ||||||
|  |  | ||||||
|  |         il = (il + 2 < nl) ? il + 2 : il % 2; | ||||||
|  |         x  = (il < 2) ? x + (2 + nl - 1)/nl : x; | ||||||
|  |  | ||||||
|  |         y += NK; | ||||||
|  |  | ||||||
|  |         threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|  | #ifndef GGML_METAL_HAS_TENSOR | ||||||
|  |         // load matrices from threadgroup memory and conduct outer products | ||||||
|  |         threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2)); | ||||||
|  |         threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2)); | ||||||
|  |  | ||||||
|  |         FOR_UNROLL (short ik = 0; ik < NK/8; ik++) { | ||||||
|  |             simdgroup_barrier(mem_flags::mem_none); | ||||||
|  |  | ||||||
|  |             FOR_UNROLL (short i = 0; i < 4; i++) { | ||||||
|  |                 simdgroup_load(ma[i], lsma + 64*i, 8, 0, false); | ||||||
|             } |             } | ||||||
|  |  | ||||||
|             simdgroup_barrier(mem_flags::mem_none); |             simdgroup_barrier(mem_flags::mem_none); | ||||||
|  |  | ||||||
|             #pragma unroll(2) |             FOR_UNROLL (short i = 0; i < 2; i++) { | ||||||
|             for (short i = 0; i < 2; i++) { |                 simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false); | ||||||
|                 simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); |  | ||||||
|             } |             } | ||||||
|  |  | ||||||
|             #pragma unroll(8) |             simdgroup_barrier(mem_flags::mem_none); | ||||||
|             for (short i = 0; i < 8; i++){ |  | ||||||
|  |             FOR_UNROLL (short i = 0; i < 8; i++){ | ||||||
|                 simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); |                 simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); | ||||||
|             } |             } | ||||||
|  |  | ||||||
|             lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE; |             lsma += 8*64; | ||||||
|             lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE; |             lsmb += 4*64; | ||||||
|         } |         } | ||||||
|  | #else | ||||||
|  |         auto sA = tA.slice(0, 0); | ||||||
|  |         auto sB = tB.slice(0, 0); | ||||||
|  |  | ||||||
|  |         mm.run(sB, sA, cT); | ||||||
|  | #endif | ||||||
|     } |     } | ||||||
|  |  | ||||||
|  |     // block is smaller than 64x32, we should avoid writing data outside of the matrix | ||||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); |     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|     threadgroup float * temp_str = ((threadgroup float *) shmem) \ | #ifdef GGML_METAL_HAS_TENSOR | ||||||
|                                  + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M; |     auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1)); | ||||||
|  |     cT.store(tC); | ||||||
|  | #else | ||||||
|  |     threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0; | ||||||
|  |  | ||||||
|     #pragma unroll(8) |  | ||||||
|     for (short i = 0; i < 8; i++) { |     for (short i = 0; i < 8; i++) { | ||||||
|         simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); |         simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false); | ||||||
|     } |     } | ||||||
|  | #endif | ||||||
|  |  | ||||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); |     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||||
|  |  | ||||||
|     for (short j = sgitg; j < n_cols; j += 4) { |     for (short j = sgitg; j < nr1; j += 4) { | ||||||
|         const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j]; |         const int id = ids_i32[im*args.ne21 + r1 + j]; | ||||||
|  |  | ||||||
|         const short ide = id % args.ne20; |         const short ide = id % args.ne20; | ||||||
|         const short idt = id / args.ne20; |         const short idt = id / args.ne20; | ||||||
|  |  | ||||||
|         device float  * D  = (device float  *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0; |         device float  * D  = (device float  *) dst + r0 + ide*args.ne0 + idt*args.ne1*args.ne0; | ||||||
|         device float4 * D4 = (device float4 *) D; |         device float4 * D4 = (device float4 *) D; | ||||||
|  |  | ||||||
|         threadgroup float  * C  = (threadgroup float  *) shmem + (j*BLOCK_SIZE_M); |         threadgroup float  * C  = (threadgroup float  *) shmem + j*NR0; | ||||||
|         threadgroup float4 * C4 = (threadgroup float4 *) C; |         threadgroup float4 * C4 = (threadgroup float4 *) C; | ||||||
|  |  | ||||||
|         int i = tiisg; |         int i = tiisg; | ||||||
|         for (; i < n_rows/4; i += 32) { |         for (; i < nr0/4; i += 32) { | ||||||
|             *(D4 + i) = *(C4 + i); |             *(D4 + i) = *(C4 + i); | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         i = (4*(n_rows/4)) + tiisg; |         i = (4*(nr0/4)) + tiisg; | ||||||
|         for (; i < n_rows; i += 32) { |         for (; i < nr0; i += 32) { | ||||||
|             *(D + i) = *(C + i); |             *(D + i) = *(C + i); | ||||||
|         } |         } | ||||||
|     } |     } | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov