diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 55ebe76f89..5ae15be03f 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -8204,12 +8204,12 @@ kernel void kernel_mul_mm( mc[i] = make_filled_simdgroup_matrix(0.f); } #else - auto tA = tensor, tensor_inline>(sa, dextents(NK, NR0)); - auto tB = tensor, tensor_inline>(sb, dextents(NR1, NK )); + auto tA = tensor, tensor_inline>(sa, dextents(NK, NR0)); + auto tB = tensor, tensor_inline>(sb, dextents(NR1, NK )); - constexpr auto desc = mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate); - - mpp::tensor_ops::matmul2d> mm; + mpp::tensor_ops::matmul2d< + mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate), + execution_simdgroups<4>> mm; auto cT = mm.get_destination_cooperative_tensor(); #endif @@ -8522,31 +8522,63 @@ kernel void kernel_mul_mm_id( ushort tiitg[[thread_index_in_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { - threadgroup S0 * sa = (threadgroup S0 *)(shmem); threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096); - const int r0 = tgpig.y; - const int r1 = tgpig.x; + threadgroup float * sc = (threadgroup float *)(shmem); + + constexpr int NR0 = 64; + constexpr int NR1 = 32; + + constexpr int NK = 32; + constexpr int NL0 = NK/16; + constexpr int NL1 = NK/8; + const int im = tgpig.z; // expert + const int r0 = tgpig.y*NR0; + const int r1 = tgpig.x*NR1; device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe); device const int32_t * ids_i32 = (device const int32_t *) (hids); const int32_t neh1 = tpe_u32[im]; - if (r1*BLOCK_SIZE_N >= neh1) { + if (r1 >= neh1) { return; } // if this block is of 64x32 shape or smaller - const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; - const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; + const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0; + const short nr1 = ( neh1 - r1 < NR1) ? ( neh1 - r1) : NR1; // a thread shouldn't load data outside of the matrix - const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; - const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; + const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63 + const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31 + const short il0 = (tiitg % NL0); + + short il = il0; + + const int id = ids_i32[im*args.ne21 + r1 + lr1]; + + const short i11 = (id % args.ne20) % args.ne11; + const short i12 = (id / args.ne20); + const short i13 = 0; + + const uint64_t offset0 = im*args.nb02 + i13*args.nb03; + const short offset1 = il0/nl; + + device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1; + + const short iy = 8*(tiitg % NL1); + + device const T1 * y = (device const T1 *)(src1 + + args.nb13*i13 + + args.nb12*i12 + + args.nb11*i11 + + args.nb10*iy); + +#ifndef GGML_METAL_HAS_TENSOR S0_8x8 ma[4]; S1_8x8 mb[2]; @@ -8555,39 +8587,36 @@ kernel void kernel_mul_mm_id( for (short i = 0; i < 8; i++){ mc[i] = make_filled_simdgroup_matrix(0.f); } +#else + auto tA = tensor, tensor_inline>(sa, dextents(NK, NR0)); + auto tB = tensor, tensor_inline>(sb, dextents(NR1, NK )); - short il = (tiitg % THREAD_PER_ROW); + mpp::tensor_ops::matmul2d< + mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate), + execution_simdgroups<4>> mm; - const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col]; + auto cT = mm.get_destination_cooperative_tensor(); +#endif - const short i11 = (id % args.ne20) % args.ne11; - const short i12 = (id / args.ne20); - const short i13 = 0; - - const uint64_t offset0 = im*args.nb02 + i13*args.nb03; - const short offset1 = il/nl; - - device const block_q * x = (device const block_q *)(src0 - + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1; - - const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)); - - device const T1 * y = (device const T1 *)(src1 - + args.nb13*i13 - + args.nb12*i12 - + args.nb11*i11 - + args.nb10*iy); - - for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) { + for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) { +#ifndef GGML_METAL_HAS_TENSOR // load data and store to threadgroup memory if (is_same::value && FC_mul_mm_bc_inp) { threadgroup_barrier(mem_flags::mem_threadgroup); // no need for dequantization for (short i = 0; i < 16; i++) { - *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ - + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ - + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0; + const short sx = 2*il0 + i/8; + const short sy = (tiitg/NL0)/8; + + //const short lx = i%8; + //const short ly = (tiitg/NL0)%8; + const short lx = (tiitg/NL0)%8; + const short ly = i%8; + + const short ib = 8*sx + sy; + + *(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0; } } else { S0_4x4 temp_a; @@ -8596,85 +8625,188 @@ kernel void kernel_mul_mm_id( threadgroup_barrier(mem_flags::mem_threadgroup); FOR_UNROLL (short i = 0; i < 16; i++) { - *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ - + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ - + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4]; + const short sx = 2*il0 + i/8; + const short sy = (tiitg/NL0)/8; + + //const short lx = i%8; + //const short ly = (tiitg/NL0)%8; + const short lx = (tiitg/NL0)%8; + const short ly = i%8; + + const short ib = 8*sx + sy; + + // NOTE: this is massively slower.. WTF? + //sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4]; + + *(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4]; } } if (FC_mul_mm_bc_inp) { for (short i = 0; i < 8; ++i) { - sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0; + const short sx = (tiitg%NL1); + const short sy = (tiitg/NL1)/8; + + const short lx = i; + const short ly = (tiitg/NL1)%8; + //const short lx = (tiitg/NL1)%8; + //const short ly = i; + + const short ib = 4*sx + sy; + + *(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0; } } else { - *(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y)); + const short sx = (tiitg%NL1); + const short sy = (tiitg/NL1)/8; + + const short dx = sx; + const short dy = sy; + + const short ly = (tiitg/NL1)%8; + + const short ib = 4*sx + sy; + + *(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y)); } +#else + // load data and store to threadgroup memory + if (is_same::value && FC_mul_mm_bc_inp) { + threadgroup_barrier(mem_flags::mem_threadgroup); + + // no need for dequantization + for (short i = 0; i < 16; i++) { + const short sx = 2*il0 + i/8; + const short sy = (tiitg/NL0)/8; + + const short lx = i%8; + const short ly = (tiitg/NL0)%8; + //const short lx = (tiitg/NL0)%8; + //const short ly = i%8; + + *(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0; + } + } else { + S0_4x4 temp_a; + dequantize_func(x, il, temp_a); + + threadgroup_barrier(mem_flags::mem_threadgroup); + + FOR_UNROLL (short i = 0; i < 16; i++) { + const short sx = 2*il0 + i/8; + const short sy = (tiitg/NL0)/8; + + const short lx = i%8; + const short ly = (tiitg/NL0)%8; + //const short lx = (tiitg/NL0)%8; + //const short ly = i%8; + + *(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4]; + } + } + + if (FC_mul_mm_bc_inp) { + for (short i = 0; i < 8; ++i) { + const short sx = (tiitg%NL1); + const short sy = (tiitg/NL1)/8; + + const short lx = i; + const short ly = (tiitg/NL1)%8; + //const short lx = (tiitg/NL1)%8; + //const short ly = i; + + *(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0; + } + } else { + const short sx = (tiitg%NL1); + const short sy = (tiitg/NL1)/8; + + //const short lx = i; + const short ly = (tiitg/NL1)%8; + //const short lx = (tiitg/NL1)%8; + //const short ly = i; + + *(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y)); + } +#endif il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2 + nl - 1)/nl : x; - y += BLOCK_SIZE_K; + + y += NK; threadgroup_barrier(mem_flags::mem_threadgroup); +#ifndef GGML_METAL_HAS_TENSOR // load matrices from threadgroup memory and conduct outer products - threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2)); - threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2)); + threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2)); + threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2)); - #pragma unroll(4) - for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) { - #pragma unroll(4) - for (short i = 0; i < 4; i++) { - simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); + FOR_UNROLL (short ik = 0; ik < NK/8; ik++) { + simdgroup_barrier(mem_flags::mem_none); + + FOR_UNROLL (short i = 0; i < 4; i++) { + simdgroup_load(ma[i], lsma + 64*i, 8, 0, false); } simdgroup_barrier(mem_flags::mem_none); - #pragma unroll(2) - for (short i = 0; i < 2; i++) { - simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); + FOR_UNROLL (short i = 0; i < 2; i++) { + simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false); } - #pragma unroll(8) - for (short i = 0; i < 8; i++){ + simdgroup_barrier(mem_flags::mem_none); + + FOR_UNROLL (short i = 0; i < 8; i++){ simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); } - lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE; - lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE; + lsma += 8*64; + lsmb += 4*64; } +#else + auto sA = tA.slice(0, 0); + auto sB = tB.slice(0, 0); + + mm.run(sB, sA, cT); +#endif } + // block is smaller than 64x32, we should avoid writing data outside of the matrix threadgroup_barrier(mem_flags::mem_threadgroup); - threadgroup float * temp_str = ((threadgroup float *) shmem) \ - + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M; +#ifdef GGML_METAL_HAS_TENSOR + auto tC = tensor, tensor_inline>(sc, dextents(NR0, NR1)); + cT.store(tC); +#else + threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0; - #pragma unroll(8) for (short i = 0; i < 8; i++) { - simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); + simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false); } +#endif threadgroup_barrier(mem_flags::mem_threadgroup); - for (short j = sgitg; j < n_cols; j += 4) { - const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j]; + for (short j = sgitg; j < nr1; j += 4) { + const int id = ids_i32[im*args.ne21 + r1 + j]; const short ide = id % args.ne20; const short idt = id / args.ne20; - device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0; + device float * D = (device float *) dst + r0 + ide*args.ne0 + idt*args.ne1*args.ne0; device float4 * D4 = (device float4 *) D; - threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M); + threadgroup float * C = (threadgroup float *) shmem + j*NR0; threadgroup float4 * C4 = (threadgroup float4 *) C; int i = tiisg; - for (; i < n_rows/4; i += 32) { + for (; i < nr0/4; i += 32) { *(D4 + i) = *(C4 + i); } - i = (4*(n_rows/4)) + tiisg; - for (; i < n_rows; i += 32) { + i = (4*(nr0/4)) + tiisg; + for (; i < nr0; i += 32) { *(D + i) = *(C + i); } }