metal : support tensors in mul_mm_id

This commit is contained in:
Georgi Gerganov
2025-10-20 19:03:59 +03:00
parent 57fa815392
commit 43372027e9

View File

@@ -8204,12 +8204,12 @@ kernel void kernel_mul_mm(
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
#else
auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
constexpr auto desc = mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate);
mpp::tensor_ops::matmul2d<desc, execution_simdgroups<4>> mm;
mpp::tensor_ops::matmul2d<
mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
execution_simdgroups<4>> mm;
auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
#endif
@@ -8522,31 +8522,63 @@ kernel void kernel_mul_mm_id(
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
const int r0 = tgpig.y;
const int r1 = tgpig.x;
threadgroup float * sc = (threadgroup float *)(shmem);
constexpr int NR0 = 64;
constexpr int NR1 = 32;
constexpr int NK = 32;
constexpr int NL0 = NK/16;
constexpr int NL1 = NK/8;
const int im = tgpig.z; // expert
const int r0 = tgpig.y*NR0;
const int r1 = tgpig.x*NR1;
device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe);
device const int32_t * ids_i32 = (device const int32_t *) (hids);
const int32_t neh1 = tpe_u32[im];
if (r1*BLOCK_SIZE_N >= neh1) {
if (r1 >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0;
const short nr1 = ( neh1 - r1 < NR1) ? ( neh1 - r1) : NR1;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63
const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31
const short il0 = (tiitg % NL0);
short il = il0;
const int id = ids_i32[im*args.ne21 + r1 + lr1];
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il0/nl;
device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1;
const short iy = 8*(tiitg % NL1);
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*iy);
#ifndef GGML_METAL_HAS_TENSOR
S0_8x8 ma[4];
S1_8x8 mb[2];
@@ -8555,39 +8587,36 @@ kernel void kernel_mul_mm_id(
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
#else
auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
short il = (tiitg % THREAD_PER_ROW);
mpp::tensor_ops::matmul2d<
mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
execution_simdgroups<4>> mm;
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col];
auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
#endif
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*iy);
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) {
#ifndef GGML_METAL_HAS_TENSOR
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
*(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
@@ -8596,85 +8625,188 @@ kernel void kernel_mul_mm_id(
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
// NOTE: this is massively slower.. WTF?
//sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4];
*(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
const short ib = 4*sx + sy;
*(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
*(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short dx = sx;
const short dy = sy;
const short ly = (tiitg/NL1)%8;
const short ib = 4*sx + sy;
*(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y));
}
#else
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
//const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y));
}
#endif
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K;
y += NK;
threadgroup_barrier(mem_flags::mem_threadgroup);
#ifndef GGML_METAL_HAS_TENSOR
// load matrices from threadgroup memory and conduct outer products
threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2));
threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2));
#pragma unroll(4)
for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
FOR_UNROLL (short ik = 0; ik < NK/8; ik++) {
simdgroup_barrier(mem_flags::mem_none);
FOR_UNROLL (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2)
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
FOR_UNROLL (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false);
}
#pragma unroll(8)
for (short i = 0; i < 8; i++){
simdgroup_barrier(mem_flags::mem_none);
FOR_UNROLL (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
lsma += 8*64;
lsmb += 4*64;
}
#else
auto sA = tA.slice(0, 0);
auto sB = tB.slice(0, 0);
mm.run(sB, sA, cT);
#endif
}
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
#ifdef GGML_METAL_HAS_TENSOR
auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1));
cT.store(tC);
#else
threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0;
#pragma unroll(8)
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false);
}
#endif
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short j = sgitg; j < n_cols; j += 4) {
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j];
for (short j = sgitg; j < nr1; j += 4) {
const int id = ids_i32[im*args.ne21 + r1 + j];
const short ide = id % args.ne20;
const short idt = id / args.ne20;
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0;
device float * D = (device float *) dst + r0 + ide*args.ne0 + idt*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M);
threadgroup float * C = (threadgroup float *) shmem + j*NR0;
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = tiisg;
for (; i < n_rows/4; i += 32) {
for (; i < nr0/4; i += 32) {
*(D4 + i) = *(C4 + i);
}
i = (4*(n_rows/4)) + tiisg;
for (; i < n_rows; i += 32) {
i = (4*(nr0/4)) + tiisg;
for (; i < nr0; i += 32) {
*(D + i) = *(C + i);
}
}