mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Various helper functions and utilities
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
#include <random>
 | 
						|
#include <thread>
 | 
						|
 | 
						|
//
 | 
						|
// CLI argument parsing
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_params {
 | 
						|
    int32_t seed      = -1; // RNG seed
 | 
						|
    int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | 
						|
    int32_t n_predict = 128; // new tokens to predict
 | 
						|
    int32_t repeat_last_n = 64;  // last n tokens to penalize
 | 
						|
    int32_t n_ctx = 512; //context size
 | 
						|
    bool memory_f16 = false; // use f16 instead of f32 for memory kv
 | 
						|
 | 
						|
    // sampling parameters
 | 
						|
    int32_t top_k = 40;
 | 
						|
    float   top_p = 0.95f;
 | 
						|
    float   temp  = 0.80f;
 | 
						|
    float   repeat_penalty  = 1.30f;
 | 
						|
 | 
						|
    int32_t n_batch = 8; // batch size for prompt processing
 | 
						|
 | 
						|
    std::string model      = "models/lamma-7B/ggml-model.bin"; // model path
 | 
						|
    std::string prompt     = "";
 | 
						|
 | 
						|
    bool random_prompt = false;
 | 
						|
 | 
						|
    bool use_color = false; // use color to distinguish generations and inputs
 | 
						|
 | 
						|
    bool interactive = false; // interactive mode
 | 
						|
    bool interactive_start = false; // reverse prompt immediately
 | 
						|
    std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | 
						|
    bool instruct    = false; // instruction mode (used for Alpaca models)
 | 
						|
    bool ignore_eos = false; // do not stop generating after eos
 | 
						|
};
 | 
						|
 | 
						|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | 
						|
 | 
						|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | 
						|
 | 
						|
std::string gpt_random_prompt(std::mt19937 & rng);
 | 
						|
 | 
						|
//
 | 
						|
// Model file parsing
 | 
						|
//
 | 
						|
 | 
						|
#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
 | 
						|
#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
 | 
						|
#define FILE_VERSION 1
 | 
						|
 | 
						|
//
 | 
						|
// Vocab utils
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_vocab {
 | 
						|
    using id    = int32_t;
 | 
						|
    using token = std::string;
 | 
						|
 | 
						|
    std::map<token, id> token_to_id;
 | 
						|
    std::map<id, token> id_to_token;
 | 
						|
    std::map<id, float> score;
 | 
						|
};
 | 
						|
 | 
						|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
 | 
						|
 | 
						|
// poor-man's JSON parsing
 | 
						|
std::map<std::string, int32_t> json_parse(const std::string & fname);
 | 
						|
 | 
						|
// split text into tokens
 | 
						|
//
 | 
						|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
 | 
						|
//
 | 
						|
// Regex (Python):
 | 
						|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
 | 
						|
//
 | 
						|
// Regex (C++):
 | 
						|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
 | 
						|
//
 | 
						|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
 | 
						|
 | 
						|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
 | 
						|
// ref: https://github.com/google/sentencepiece
 | 
						|
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, std::string_view text, bool bos);
 | 
						|
 | 
						|
// load the tokens from encoder.json
 | 
						|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
 | 
						|
 | 
						|
// sample next token given probabilities for each embedding
 | 
						|
//
 | 
						|
//   - consider only the top K tokens
 | 
						|
//   - from them, consider only the top tokens with cumulative probability > P
 | 
						|
//
 | 
						|
gpt_vocab::id llama_sample_top_p_top_k(
 | 
						|
        const gpt_vocab & vocab,
 | 
						|
        const float * logits,
 | 
						|
        std::vector<gpt_vocab::id> & last_n_tokens,
 | 
						|
        double repeat_penalty,
 | 
						|
        int top_k,
 | 
						|
        double top_p,
 | 
						|
        double temp,
 | 
						|
        std::mt19937 & rng);
 | 
						|
 | 
						|
// filer to top K tokens from list of logits
 | 
						|
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
 | 
						|
 | 
						|
//
 | 
						|
// Quantization
 | 
						|
//
 | 
						|
 | 
						|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 | 
						|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 |