mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			185 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
| import Foundation
 | |
| 
 | |
| // import llama
 | |
| 
 | |
| enum LlamaError: Error {
 | |
|     case couldNotInitializeContext
 | |
| }
 | |
| 
 | |
| actor LlamaContext {
 | |
|     private var model: OpaquePointer
 | |
|     private var context: OpaquePointer
 | |
|     private var batch: llama_batch
 | |
|     private var tokens_list: [llama_token]
 | |
| 
 | |
|     var n_len: Int32 = 512
 | |
|     var n_cur: Int32 = 0
 | |
|     var n_decode: Int32 = 0
 | |
| 
 | |
|     init(model: OpaquePointer, context: OpaquePointer) {
 | |
|         self.model = model
 | |
|         self.context = context
 | |
|         self.tokens_list = []
 | |
|         self.batch = llama_batch_init(512, 0, 1)
 | |
|     }
 | |
| 
 | |
|     deinit {
 | |
|         llama_free(context)
 | |
|         llama_free_model(model)
 | |
|         llama_backend_free()
 | |
|     }
 | |
| 
 | |
|     static func createContext(path: String) throws -> LlamaContext {
 | |
|         llama_backend_init(false)
 | |
|         let model_params = llama_model_default_params()
 | |
| 
 | |
|         let model = llama_load_model_from_file(path, model_params)
 | |
|         guard let model else {
 | |
|             print("Could not load model at \(path)")
 | |
|             throw LlamaError.couldNotInitializeContext
 | |
|         }
 | |
|         var ctx_params = llama_context_default_params()
 | |
|         ctx_params.seed = 1234
 | |
|         ctx_params.n_ctx = 2048
 | |
|         ctx_params.n_threads = 8
 | |
|         ctx_params.n_threads_batch = 8
 | |
| 
 | |
|         let context = llama_new_context_with_model(model, ctx_params)
 | |
|         guard let context else {
 | |
|             print("Could not load context!")
 | |
|             throw LlamaError.couldNotInitializeContext
 | |
|         }
 | |
| 
 | |
|         return LlamaContext(model: model, context: context)
 | |
|     }
 | |
| 
 | |
|     func get_n_tokens() -> Int32 {
 | |
|         return batch.n_tokens;
 | |
|     }
 | |
| 
 | |
|     func completion_init(text: String) {
 | |
|         print("attempting to complete \"\(text)\"")
 | |
| 
 | |
|         tokens_list = tokenize(text: text, add_bos: true)
 | |
| 
 | |
|         let n_ctx = llama_n_ctx(context)
 | |
|         let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
 | |
| 
 | |
|         print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
 | |
| 
 | |
|         if n_kv_req > n_ctx {
 | |
|             print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
 | |
|         }
 | |
| 
 | |
|         for id in tokens_list {
 | |
|             print(token_to_piece(token: id))
 | |
|         }
 | |
| 
 | |
|         // batch = llama_batch_init(512, 0) // done in init()
 | |
|         batch.n_tokens = Int32(tokens_list.count)
 | |
| 
 | |
|         for i1 in 0..<batch.n_tokens {
 | |
|             let i = Int(i1)
 | |
|             batch.token[i] = tokens_list[i]
 | |
|             batch.pos[i] = i1
 | |
|             batch.n_seq_id[Int(i)] = 1
 | |
|             batch.seq_id[Int(i)]![0] = 0
 | |
|             batch.logits[i] = 0
 | |
|         }
 | |
|         batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | |
| 
 | |
|         if llama_decode(context, batch) != 0 {
 | |
|             print("llama_decode() failed")
 | |
|         }
 | |
| 
 | |
|         n_cur = batch.n_tokens
 | |
|     }
 | |
| 
 | |
|     func completion_loop() -> String {
 | |
|         var new_token_id: llama_token = 0
 | |
| 
 | |
|         let n_vocab = llama_n_vocab(model)
 | |
|         let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
 | |
| 
 | |
|         var candidates = Array<llama_token_data>()
 | |
|         candidates.reserveCapacity(Int(n_vocab))
 | |
| 
 | |
|         for token_id in 0..<n_vocab {
 | |
|             candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
 | |
|         }
 | |
|         candidates.withUnsafeMutableBufferPointer() { buffer in
 | |
|             var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
 | |
| 
 | |
|             new_token_id = llama_sample_token_greedy(context, &candidates_p)
 | |
|         }
 | |
| 
 | |
|         if new_token_id == llama_token_eos(context) || n_cur == n_len {
 | |
|             print("\n")
 | |
|             return ""
 | |
|         }
 | |
| 
 | |
|         let new_token_str = token_to_piece(token: new_token_id)
 | |
|         print(new_token_str)
 | |
|         // tokens_list.append(new_token_id)
 | |
| 
 | |
|         batch.n_tokens = 0
 | |
| 
 | |
|         batch.token[Int(batch.n_tokens)] = new_token_id
 | |
|         batch.pos[Int(batch.n_tokens)] = n_cur
 | |
|         batch.n_seq_id[Int(batch.n_tokens)] = 1
 | |
|         batch.seq_id[Int(batch.n_tokens)]![0] = 0
 | |
|         batch.logits[Int(batch.n_tokens)] = 1 // true
 | |
|         batch.n_tokens += 1
 | |
| 
 | |
|         n_decode += 1
 | |
| 
 | |
|         n_cur += 1
 | |
| 
 | |
|         if llama_decode(context, batch) != 0 {
 | |
|             print("failed to evaluate llama!")
 | |
|         }
 | |
| 
 | |
|         return new_token_str
 | |
|     }
 | |
| 
 | |
|     func clear() {
 | |
|         tokens_list.removeAll()
 | |
|     }
 | |
| 
 | |
|     private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | |
|         let n_tokens = text.count + (add_bos ? 1 : 0)
 | |
|         let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | |
|         let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, false)
 | |
| 
 | |
|         var swiftTokens: [llama_token] = []
 | |
|         for i in 0..<tokenCount {
 | |
|             swiftTokens.append(tokens[Int(i)])
 | |
|         }
 | |
| 
 | |
|         tokens.deallocate()
 | |
| 
 | |
|         return swiftTokens
 | |
|     }
 | |
| 
 | |
|     private func token_to_piece(token: llama_token) -> String {
 | |
|         let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
 | |
|         result.initialize(repeating: Int8(0), count: 8)
 | |
|         defer {
 | |
|             result.deallocate()
 | |
|         }
 | |
|         let nTokens = llama_token_to_piece(model, token, result, 8)
 | |
| 
 | |
|         if nTokens < 0 {
 | |
|             let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
 | |
|             newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
 | |
|             defer {
 | |
|                 newResult.deallocate()
 | |
|             }
 | |
|             _ = llama_token_to_piece(model, token, newResult, -nTokens)
 | |
|             return String(cString: newResult)
 | |
|         } else {
 | |
|             return String(cString: result)
 | |
|         }
 | |
|     }
 | |
| }
 | 
