mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
831 lines
28 KiB
C++
831 lines
28 KiB
C++
#include "zdnn.h"
|
|
#include "ggml-zdnn.h"
|
|
#include "ggml-zdnn-impl.h"
|
|
|
|
#include "ggml-impl.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include <csignal>
|
|
#include <unistd.h>
|
|
|
|
static bool ggml_zdnn_op_mul_mat(struct ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const enum ggml_type type = src0->type;
|
|
|
|
GGML_ASSERT(ne0 == ne01);
|
|
GGML_ASSERT(ne1 == ne11);
|
|
GGML_ASSERT(ne2 == ne12);
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
// we don't support permuted src0 or src1
|
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
|
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
const ggml_tensor * weights = src0;
|
|
const ggml_tensor * inputs = src1;
|
|
ggml_tensor * output = dst;
|
|
|
|
const ggml_backend_zdnn_buffer * weights_extra = (const ggml_backend_zdnn_buffer *)weights->extra;
|
|
const ggml_backend_zdnn_buffer * inputs_extra = (const ggml_backend_zdnn_buffer *)inputs->extra;
|
|
ggml_backend_zdnn_buffer * output_extra = ( ggml_backend_zdnn_buffer *)output->extra;
|
|
|
|
zdnn_tensor_desc pre_tfm_desc_bias, tfm_desc_bias;
|
|
zdnn_ztensor ztensor_bias;
|
|
|
|
const int64_t weights_rows = ne01;
|
|
const int64_t weights_cols = ne00;
|
|
const int64_t inputs_rows = ne11;
|
|
const int64_t inputs_cols = ne10;
|
|
|
|
assert(inputs_cols == weights_cols);
|
|
|
|
const int64_t output_rows = ne1;
|
|
const int64_t output_cols = ne0;
|
|
|
|
const int64_t blas_dim[GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
|
|
|
|
zdnn_init_pre_transformed_desc(
|
|
ZDNN_1D,
|
|
FP32,
|
|
&pre_tfm_desc_bias,
|
|
blas_dim[3], blas_dim[2], blas_dim[1], blas_dim[0]
|
|
);
|
|
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc_bias, &tfm_desc_bias));
|
|
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc_bias, &tfm_desc_bias, &ztensor_bias));
|
|
|
|
void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
|
|
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor_bias, bias_data));
|
|
|
|
std::raise(SIGINT);
|
|
ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &ztensor_bias,
|
|
false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
|
|
ZDNN_CHECK(zdnn_transform_ztensor(&output_extra->ztensor, output->data));
|
|
|
|
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ztensor_bias));
|
|
free(bias_data);
|
|
}
|
|
|
|
static bool ggml_backend_zdnn_compute_forward(struct ggml_backend_zdnn_context * ctx, struct ggml_tensor * dst) {
|
|
switch (dst->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
ggml_zdnn_op_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
|
|
GGML_UNUSED(ctx);
|
|
}
|
|
|
|
//
|
|
// globals
|
|
//
|
|
|
|
// initialised in ggml_backend_zdnn_reg
|
|
static struct ggml_backend_reg g_ggml_backend_zdnn_reg;
|
|
static struct ggml_backend_device g_ggml_backend_zdnn_device;
|
|
|
|
// information about an NNPA device
|
|
// note: assumes single NNPA device - the default one
|
|
static struct ggml_backend_zdnn_device_context {
|
|
int zdnn_device;
|
|
int zdnn_device_ref_count;
|
|
|
|
bool has_nnpa_parmblkformat_1;
|
|
|
|
int32_t max_dim_idx_size;
|
|
|
|
char name[128];
|
|
} g_ggml_ctx_dev_main = {
|
|
/* .zdnn_device = */ 0,
|
|
/* .zdnn_device_ref_count = */ 0,
|
|
/* .has_nnpa_parmblkformat_1 = */ false,
|
|
/* .max_dim_idx_size = */ 0,
|
|
/* .name = */ "",
|
|
};
|
|
|
|
// acquire
|
|
static int ggml_backend_zdnn_device_acq(struct ggml_backend_zdnn_device_context * ctx) {
|
|
assert(ctx != NULL);
|
|
|
|
if (ctx->zdnn_device == 0) {
|
|
ctx->zdnn_device = 1;
|
|
}
|
|
|
|
if (ctx->zdnn_device) {
|
|
// ctx->has_nnpa_parmblkformat_1 = zdnn_has_nnpa_parmblkformat_1(ctx->zdnn_device);
|
|
ctx->max_dim_idx_size = zdnn_get_nnpa_max_dim_idx_size();
|
|
|
|
strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
|
|
ctx->name[sizeof(ctx->name) - 1] = '\0';
|
|
}
|
|
|
|
ctx->zdnn_device_ref_count++;
|
|
return ctx->zdnn_device;
|
|
}
|
|
|
|
// release
|
|
static void ggml_backend_zdnn_device_rel(struct ggml_backend_zdnn_device_context * ctx) {
|
|
assert(ctx != NULL);
|
|
assert(ctx->zdnn_device_ref_count > 0);
|
|
|
|
ctx->zdnn_device_ref_count--;
|
|
}
|
|
|
|
struct ggml_backend_zdnn_context {
|
|
int device;
|
|
|
|
struct ggml_cgraph * gf;
|
|
};
|
|
|
|
static struct ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
|
|
GGML_LOG_INFO("%s: allocating\n", __func__);
|
|
|
|
struct ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)calloc(1, sizeof(struct ggml_backend_zdnn_context));
|
|
struct ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
|
|
|
|
int device = ctx_dev->zdnn_device;
|
|
|
|
GGML_LOG_INFO("%s: picking default device: %d\n", __func__, device);
|
|
|
|
ctx->device = device;
|
|
|
|
// GGML_LOG_INFO("%s: NNPA Name: %s\n", __func__, )
|
|
// GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_nnpa_parmblkformat_1 ? "true" : "false");
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void ggml_zdnn_free(struct ggml_backend_zdnn_context * ctx) {
|
|
GGML_LOG_INFO("%s: deallocating\n", __func__);
|
|
free(ctx);
|
|
}
|
|
|
|
struct ggml_backend_zdnn_buffer_context {
|
|
void * all_data;
|
|
size_t all_size;
|
|
bool owned;
|
|
|
|
int n_buffers;
|
|
struct ggml_backend_zdnn_buffer buffers[999999]; // TODO: CHANGE TO VECTOR
|
|
};
|
|
|
|
// finds the zTensor that contains the tensor data
|
|
// the assumption is that there is a 1-to-1 mapping between the host and NNPA
|
|
// device buffers, so we can find the zTensor buffer based on the host memory pointer
|
|
static zdnn_ztensor * ggml_zdnn_get_buffer(struct ggml_tensor * t, size_t * offset) {
|
|
const int64_t tsize = ggml_nbytes(t);
|
|
|
|
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
|
|
|
struct ggml_backend_zdnn_buffer_context * buf_ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
|
|
|
|
// find the view that contains the tensor fully
|
|
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
|
|
const int64_t ioffs = (int64_t)t->data - (int64_t)buf_ctx->buffers[i].data;
|
|
|
|
if (ioffs >= 0 && ioffs + tsize <= (int64_t)buf_ctx->buffers[i].size) {
|
|
*offset = (size_t)ioffs;
|
|
|
|
return &buf_ctx->buffers[i].ztensor;
|
|
}
|
|
}
|
|
|
|
GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool ggml_zdnn_supports_op(const struct ggml_backend_zdnn_device_context * ctx_dev, const struct ggml_tensor * op) {
|
|
const struct ggml_tensor * src0 = op->src[0];
|
|
const struct ggml_tensor * src1 = op->src[1];
|
|
const struct ggml_tensor * dst = op;
|
|
|
|
switch (op->op) {
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_CONCAT:
|
|
return true;
|
|
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const int32_t max_dim_idx_size = ctx_dev->max_dim_idx_size;
|
|
|
|
return ggml_is_contiguous(src0) &&
|
|
ggml_is_contiguous(src1) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
(ne0 <= max_dim_idx_size && ne1 <= max_dim_idx_size && ne10 <= max_dim_idx_size) &&
|
|
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
|
} break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
GGML_UNUSED(ctx_dev);
|
|
}
|
|
|
|
static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * gf) {
|
|
struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context;
|
|
// struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)backend->device->context;
|
|
|
|
ctx->gf = gf;
|
|
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
if (ggml_is_empty(node)
|
|
|| node->op == GGML_OP_NONE
|
|
|| node->op == GGML_OP_RESHAPE
|
|
|| node->op == GGML_OP_VIEW
|
|
|| node->op == GGML_OP_PERMUTE
|
|
|| node->op == GGML_OP_TRANSPOSE) {
|
|
continue;
|
|
}
|
|
|
|
// #ifndef NDEBUG
|
|
// assert(node->buffer->buft == ggml_backend_zdnn_buffer_type());
|
|
// for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
// if (node->src[j] != nullptr) {
|
|
// assert(node->src[j]->buffer);
|
|
// assert(node->src[j]->buffer->buft == ggml_backend_zdnn_buffer_type() ||
|
|
// ggml_backend_buft_is_host(node->src[j]->buffer->buft));
|
|
// }
|
|
// }
|
|
// #endif // NDEBUG
|
|
|
|
bool ok = ggml_backend_zdnn_compute_forward(ctx, node);
|
|
if (!ok) {
|
|
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
|
|
__func__, ggml_op_name(node->op), node->name);
|
|
return GGML_STATUS_FAILED;
|
|
}
|
|
|
|
GGML_ASSERT(ok);
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
static void ggml_zdnn_init_bias_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) {
|
|
zdnn_init_pre_transformed_desc(
|
|
ZDNN_1D,
|
|
FP32,
|
|
&buffer->pre_tfm_desc,
|
|
tensor->ne[0], 1, 1, 1
|
|
);
|
|
|
|
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
|
|
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
|
|
}
|
|
|
|
static void ggml_zdnn_init_tensor(struct ggml_backend_zdnn_buffer * buffer, struct ggml_tensor * tensor) {
|
|
switch (tensor->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
zdnn_init_pre_transformed_desc(
|
|
ZDNN_2D,
|
|
FP32,
|
|
&buffer->pre_tfm_desc,
|
|
tensor->ne[1], tensor->ne[0]
|
|
);
|
|
} break;
|
|
default:
|
|
{
|
|
zdnn_init_pre_transformed_desc(
|
|
ZDNN_NCHW,
|
|
FP32,
|
|
&buffer->pre_tfm_desc,
|
|
tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
|
|
);
|
|
} break;
|
|
}
|
|
|
|
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
|
|
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
// backend interface
|
|
//
|
|
|
|
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
|
|
|
|
for (int i = 0; i < ctx->n_buffers; i++) {
|
|
struct ggml_backend_zdnn_buffer * buf = &ctx->buffers[i];
|
|
|
|
// free any extra buffers (e.g., bias)
|
|
if (buf->extra != nullptr) {
|
|
zdnn_free_ztensor_buffer(&buf->extra->ztensor);
|
|
free(buf->extra->data);
|
|
}
|
|
zdnn_free_ztensor_buffer(&buf->ztensor);
|
|
}
|
|
|
|
if (ctx->owned) {
|
|
free(ctx->all_data);
|
|
}
|
|
|
|
free(ctx);
|
|
}
|
|
|
|
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
|
|
return ctx->all_data;
|
|
}
|
|
|
|
static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
|
if (tensor->view_src != NULL) {
|
|
assert(tensor->view_src->buffer->buft == buffer->buft);
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
|
|
|
|
// Create a dedicated buffer entry for this tensor
|
|
int tensor_buffer_idx;
|
|
int bias_buffer_idx;
|
|
const int64_t tsize = ggml_nbytes(tensor);
|
|
|
|
struct ggml_backend_zdnn_buffer * tensor_buffer;
|
|
tensor_buffer_idx = ctx->n_buffers;
|
|
tensor_buffer = &ctx->buffers[tensor_buffer_idx];
|
|
tensor_buffer->data = tensor->data;
|
|
tensor_buffer->size = tsize;
|
|
snprintf(tensor_buffer->name, sizeof(tensor_buffer->name), "%s", tensor->name);
|
|
|
|
ggml_zdnn_init_tensor(tensor_buffer, tensor);
|
|
ctx->n_buffers++;
|
|
|
|
if (tensor->op == GGML_OP_MUL_MAT) {
|
|
struct ggml_backend_zdnn_buffer * bias_buffer;
|
|
bias_buffer_idx = tensor_buffer_idx + 1;
|
|
bias_buffer = &ctx->buffers[bias_buffer_idx];
|
|
bias_buffer->data = calloc(tensor->ne[0], tensor->ne[0] * sizeof(float));
|
|
bias_buffer->size = tensor->ne[0] * sizeof(float);
|
|
snprintf(bias_buffer->name, sizeof(bias_buffer->name), "%s.bias", tensor->name);
|
|
|
|
ggml_zdnn_init_bias_tensor(bias_buffer, tensor);
|
|
ctx->n_buffers++;
|
|
|
|
tensor_buffer->extra = bias_buffer;
|
|
|
|
GGML_LOG_INFO("%s: initialized bias tensor '%s' in buffer %d, size = %8.2f MiB\n",
|
|
__func__, bias_buffer->name, bias_buffer_idx,
|
|
(float)bias_buffer->size / (1024.0f * 1024.0f));
|
|
}
|
|
|
|
GGML_LOG_INFO("%s: initialized tensor '%s' in buffer %d, size = %8.2f MiB\n",
|
|
__func__, ctx->buffers[tensor_buffer_idx].name, tensor_buffer_idx,
|
|
(float)tsize / (1024.0f * 1024.0f));
|
|
|
|
tensor->extra = &ctx->buffers[tensor_buffer_idx];
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
|
memset((char *)tensor->data + offset, value, size);
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra;
|
|
ZDNN_CHECK(zdnn_transform_ztensor(&extra->ztensor, (void *)((char *)tensor->data + offset)));
|
|
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
ggml_backend_zdnn_buffer * extra = (ggml_backend_zdnn_buffer *)tensor->extra;
|
|
ZDNN_CHECK(zdnn_transform_origtensor(&extra->ztensor, (void *)((char *)tensor->data + offset)));
|
|
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)buffer->context;
|
|
memset(ctx->all_data, value, ctx->all_size);
|
|
}
|
|
|
|
static struct ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
|
|
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
|
|
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
|
|
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_zdnn_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
//
|
|
// default buffer type
|
|
//
|
|
|
|
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
return GGML_ZDNN_NAME;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context));
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
size_t size_aligned = size;
|
|
if (size_aligned % size_page != 0) {
|
|
size_aligned += size_page - (size_aligned % size_page);
|
|
}
|
|
|
|
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)buft->device->context;
|
|
|
|
GGML_ASSERT(ctx_dev->zdnn_device != 0);
|
|
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
|
|
|
|
ctx->all_data = ggml_aligned_malloc(size_aligned);
|
|
ctx->all_size = size_aligned;
|
|
ctx->owned = true;
|
|
ctx->n_buffers = 1;
|
|
|
|
if (ctx->all_data != NULL) {
|
|
ctx->buffers[0].data = ctx->all_data;
|
|
ctx->buffers[0].size = size;
|
|
}
|
|
|
|
if (size_aligned > 0 && (ctx->all_data == NULL)) {
|
|
GGML_LOG_ERROR("%s: failed to allocate buffer, size = %8.2f MiB\n",
|
|
__func__, (float)size_aligned / (1024.0f / 1024.0f));
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return 256;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
|
return true;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
|
|
static struct ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
|
|
/* .get_max_size = */ NULL,
|
|
/* .get_alloc_size = */ NULL,
|
|
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
|
|
},
|
|
/* .device = */ &g_ggml_backend_zdnn_device,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
return &ggml_backend_buffer_type_zdnn;
|
|
}
|
|
|
|
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
return "ZDNN_Mapped";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
|
|
static struct ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
|
|
/* .get_max_size = */ NULL,
|
|
/* .get_alloc_size = */ NULL,
|
|
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
|
|
},
|
|
/* .device = */ &g_ggml_backend_zdnn_device,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
return &ggml_backend_buffer_from_ptr_type_zdnn;
|
|
}
|
|
|
|
static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
|
|
return GGML_ZDNN_NAME;
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
|
|
struct ggml_backend_zdnn_context * ctx = (struct ggml_backend_zdnn_context *)backend->context;
|
|
|
|
ggml_aligned_free(ctx, 0);
|
|
free(backend);
|
|
}
|
|
|
|
static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
|
return ggml_zdnn_graph_compute(backend, cgraph);
|
|
}
|
|
|
|
static struct ggml_backend_i ggml_backend_zdnn_i = {
|
|
/* .get_name = */ ggml_backend_zdnn_name,
|
|
/* .free = */ ggml_backend_zdnn_free,
|
|
/* .set_tensor_async = */ NULL,
|
|
/* .get_tensor_async = */ NULL,
|
|
/* .cpy_tensor_async = */ NULL,
|
|
/* .synchronize = */ NULL,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_update = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
|
|
/* .event_record = */ NULL,
|
|
/* .event_wait = */ NULL,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_zdnn_guid(void) {
|
|
static const char * guid_str = "IBM-ZDNN_ACCELER";
|
|
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
|
|
}
|
|
|
|
ggml_backend_t ggml_backend_zdnn_init(void) {
|
|
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
|
|
|
|
struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
|
|
if (ctx == NULL) {
|
|
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend));
|
|
|
|
* backend = (struct ggml_backend) {
|
|
/* .guid = */ ggml_backend_zdnn_guid(),
|
|
/* .iface = */ ggml_backend_zdnn_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
|
|
}
|
|
|
|
//
|
|
// backend device
|
|
//
|
|
|
|
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
|
|
return GGML_ZDNN_NAME;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
|
|
return "IBM Z Neural Network Processing Assist (NNPA)";
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
|
*free = 1;
|
|
*total = 1;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
|
|
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
|
props->name = ggml_backend_zdnn_device_get_name(dev);
|
|
props->description = ggml_backend_zdnn_device_get_description(dev);
|
|
props->type = ggml_backend_zdnn_device_get_type(dev);
|
|
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
|
props->caps = (struct ggml_backend_dev_caps) {
|
|
/* .async = */ false,
|
|
/* .host_buffer = */ false,
|
|
/* .buffer_from_host_ptr = */ true,
|
|
/* .events = */ false,
|
|
};
|
|
}
|
|
|
|
static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
|
|
struct ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
|
|
if (ctx == NULL) {
|
|
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ggml_backend_t backend = (ggml_backend *)ggml_aligned_malloc(sizeof(struct ggml_backend));
|
|
|
|
* backend = (struct ggml_backend) {
|
|
/* .guid = */ ggml_backend_zdnn_guid(),
|
|
/* .iface = */ ggml_backend_zdnn_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
return backend;
|
|
|
|
GGML_UNUSED(params);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
|
|
return ggml_backend_zdnn_buffer_type();
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
|
struct ggml_backend_zdnn_buffer_context * ctx = (struct ggml_backend_zdnn_buffer_context *)calloc(1, sizeof(struct ggml_backend_zdnn_buffer_context));
|
|
|
|
ctx->all_data = ptr;
|
|
ctx->all_size = size;
|
|
ctx->owned = false;
|
|
ctx->n_buffers = 0;
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
// page-align the data ptr
|
|
{
|
|
const uintptr_t offset = (uintptr_t)ptr % size_page;
|
|
ptr = (void *)((char *)ptr - offset);
|
|
size += offset;
|
|
}
|
|
|
|
size_t size_aligned = size;
|
|
if ((size_aligned % size_page) != 0) {
|
|
size_aligned += size_page - (size_aligned % size_page);
|
|
}
|
|
|
|
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context;
|
|
|
|
GGML_ASSERT(ctx_dev->zdnn_device != 0);
|
|
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
|
|
|
|
ctx->buffers[ctx->n_buffers].data = ptr;
|
|
ctx->buffers[ctx->n_buffers].size = size;
|
|
|
|
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
|
|
__func__, (float)size_aligned / (1024.0f / 1024.0f));
|
|
|
|
++ctx->n_buffers;
|
|
|
|
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
|
|
|
|
GGML_UNUSED(max_tensor_size);
|
|
}
|
|
|
|
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
struct ggml_backend_zdnn_device_context * ctx_dev = (struct ggml_backend_zdnn_device_context *)dev->context;
|
|
|
|
return ggml_zdnn_supports_op(ctx_dev, op);
|
|
}
|
|
|
|
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
|
return
|
|
buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
|
|
buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static bool ggml_backend_zdnn_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
return false;
|
|
|
|
GGML_UNUSED(dev);
|
|
GGML_UNUSED(op);
|
|
}
|
|
|
|
static struct ggml_backend_device_i ggml_backend_zdnn_device_i = {
|
|
/* .get_name = */ ggml_backend_zdnn_device_get_name,
|
|
/* .get_description = */ ggml_backend_zdnn_device_get_description,
|
|
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
|
|
/* .get_type = */ ggml_backend_zdnn_device_get_type,
|
|
/* .get_props = */ ggml_backend_zdnn_device_get_props,
|
|
/* .init_backend = */ ggml_backend_zdnn_device_init,
|
|
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
|
|
/* .get_host_buffer_type = */ NULL,
|
|
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
|
|
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
|
|
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
|
|
/* .offload_op = */ ggml_backend_zdnn_device_offload_op,
|
|
/* .event_new = */ NULL,
|
|
/* .event_free = */ NULL,
|
|
/* .event_synchronize = */ NULL,
|
|
};
|
|
|
|
//
|
|
// backend registry
|
|
//
|
|
|
|
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
|
|
return GGML_ZDNN_NAME;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
|
|
if (!zdnn_is_nnpa_installed()) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
|
GGML_ASSERT(index == 0);
|
|
|
|
return &g_ggml_backend_zdnn_device;
|
|
|
|
GGML_UNUSED(reg);
|
|
GGML_UNUSED(index);
|
|
}
|
|
|
|
static struct ggml_backend_feature g_ggml_backend_zdnn_features[] = {
|
|
// Change once we have proper detections
|
|
{ "NNPA_PARMBLK", "1"},
|
|
};
|
|
|
|
static struct ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
|
|
return g_ggml_backend_zdnn_features;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
|
return NULL;
|
|
|
|
GGML_UNUSED(reg);
|
|
GGML_UNUSED(name);
|
|
}
|
|
|
|
static struct ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
|
|
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
|
|
/* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
|
|
/* .get_device = */ ggml_backend_zdnn_reg_device_get,
|
|
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
|
|
};
|
|
|
|
static void ggml_zdnn_cleanup(void) {
|
|
ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
|
|
}
|
|
|
|
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
|
|
ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
|
|
|
|
atexit(ggml_zdnn_cleanup);
|
|
|
|
{
|
|
g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
|
|
/* .api_version = */ GGML_ZDNN_VERSION,
|
|
/* .iface = */ ggml_backend_zdnn_reg_i,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
g_ggml_backend_zdnn_device = (ggml_backend_device) {
|
|
/* .iface = */ ggml_backend_zdnn_device_i,
|
|
/* .reg = */ &g_ggml_backend_zdnn_reg,
|
|
/* .context = */ &g_ggml_ctx_dev_main,
|
|
};
|
|
}
|
|
|
|
return &g_ggml_backend_zdnn_reg;
|
|
}
|
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)
|