mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			44 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			44 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # GLMV-EDGE
 | |
| 
 | |
| Currently this implementation supports [glm-edge-v-2b](https://huggingface.co/THUDM/glm-edge-v-2b) and [glm-edge-v-5b](https://huggingface.co/THUDM/glm-edge-v-5b).
 | |
| 
 | |
| ## Usage
 | |
| Build the `llama-mtmd-cli` binary.
 | |
| 
 | |
| After building, run: `./llama-mtmd-cli` to see the usage. For example:
 | |
| 
 | |
| ```sh
 | |
| ./llama-mtmd-cli -m model_path/ggml-model-f16.gguf --mmproj model_path/mmproj-model-f16.gguf
 | |
| ```
 | |
| 
 | |
| **note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
 | |
| **note**: For GPU offloading ensure to use the `-ngl` flag just like usual
 | |
| 
 | |
| ## GGUF conversion
 | |
| 
 | |
| 1. Clone a GLMV-EDGE model ([2B](https://huggingface.co/THUDM/glm-edge-v-2b) or [5B](https://huggingface.co/THUDM/glm-edge-v-5b)). For example:
 | |
| 
 | |
| ```sh
 | |
| git clone https://huggingface.co/THUDM/glm-edge-v-5b or https://huggingface.co/THUDM/glm-edge-v-2b
 | |
| ```
 | |
| 
 | |
| 2. Use `glmedge-surgery.py` to split the GLMV-EDGE model to LLM and multimodel projector constituents:
 | |
| 
 | |
| ```sh
 | |
| python ./tools/mtmd/glmedge-surgery.py -m ../model_path
 | |
| ```
 | |
| 
 | |
| 4. Use `glmedge-convert-image-encoder-to-gguf.py` to convert the GLMV-EDGE image encoder to GGUF:
 | |
| 
 | |
| ```sh
 | |
| python ./tools/mtmd/glmedge-convert-image-encoder-to-gguf.py -m ../model_path --llava-projector ../model_path/glm.projector --output-dir ../model_path
 | |
| ```
 | |
| 
 | |
| 5. Use `examples/convert_hf_to_gguf.py` to convert the LLM part of GLMV-EDGE to GGUF:
 | |
| 
 | |
| ```sh
 | |
| python convert_hf_to_gguf.py ../model_path
 | |
| ```
 | |
| 
 | |
| Now both the LLM part and the image encoder are in the `model_path` directory.
 | 
