mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
#include "build-info.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <ctime>
 | 
						|
 | 
						|
std::vector<float> softmax(const std::vector<float>& logits) {
 | 
						|
    std::vector<float> probs(logits.size());
 | 
						|
    float max_logit = logits[0];
 | 
						|
    for (float v : logits) max_logit = std::max(max_logit, v);
 | 
						|
    double sum_exp = 0.0;
 | 
						|
    for (size_t i = 0; i < logits.size(); i++) {
 | 
						|
        // Subtract the maximum logit value from the current logit value for numerical stability
 | 
						|
        const float logit = logits[i] - max_logit;
 | 
						|
        const float exp_logit = expf(logit);
 | 
						|
        sum_exp += exp_logit;
 | 
						|
        probs[i] = exp_logit;
 | 
						|
    }
 | 
						|
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | 
						|
    return probs;
 | 
						|
}
 | 
						|
 | 
						|
void perplexity(llama_context * ctx, const gpt_params & params) {
 | 
						|
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | 
						|
    // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | 
						|
    // Output: `perplexity: 13.5106 [114/114]`
 | 
						|
    auto tokens = ::llama_tokenize(ctx, params.prompt, true);
 | 
						|
 | 
						|
    int count = 0;
 | 
						|
    int seq_count = tokens.size() / params.n_ctx;
 | 
						|
    int n_vocab = llama_n_vocab(ctx);
 | 
						|
 | 
						|
    double nll = 0.0;
 | 
						|
    fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch);
 | 
						|
 | 
						|
    for (int i = 0; i < seq_count; ++i) {
 | 
						|
        int start = i * params.n_ctx;
 | 
						|
        int end = start + params.n_ctx;
 | 
						|
 | 
						|
        std::vector<float> logits;
 | 
						|
        int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch;
 | 
						|
        auto start_t = std::chrono::high_resolution_clock::now();
 | 
						|
        for (int j = 0; j < num_batches; ++j) {
 | 
						|
            int batch_start = start + j * params.n_batch;
 | 
						|
            int batch_size = std::min(end - batch_start, params.n_batch);
 | 
						|
            if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) {
 | 
						|
                fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            auto batch_logits = llama_get_logits(ctx);
 | 
						|
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | 
						|
        }
 | 
						|
        auto end_t = std::chrono::high_resolution_clock::now();
 | 
						|
        if (i == 0) {
 | 
						|
            const float seconds = std::chrono::duration<float>(end_t - start_t).count();
 | 
						|
            printf("%.2f seconds per pass - ETA ", seconds);
 | 
						|
            int total_seconds = (int)(seconds * seq_count);
 | 
						|
            if (total_seconds >= 60*60) {
 | 
						|
                printf("%d hours ", total_seconds / (60*60));
 | 
						|
                total_seconds = total_seconds % (60*60);
 | 
						|
            }
 | 
						|
            printf("%d minutes\n", total_seconds / 60);
 | 
						|
        }
 | 
						|
        // We get the logits for all the tokens in the context window (params.n_ctx)
 | 
						|
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | 
						|
        // calculate the perplexity over the last half the window (so the model always has
 | 
						|
        // some context to predict the token).
 | 
						|
        //
 | 
						|
        // We rely on the fact that attention in the forward pass only looks at previous
 | 
						|
        // tokens here, so the logits returned for each token are an accurate representation
 | 
						|
        // of what the model would have predicted at that point.
 | 
						|
        //
 | 
						|
        // Example, we have a context window of 512, we will compute perplexity for each of the
 | 
						|
        // last 256 tokens.  Then, we split the input up into context window size chunks to
 | 
						|
        // process the entire prompt.
 | 
						|
        for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
 | 
						|
            // Calculate probability of next token, given the previous ones.
 | 
						|
            std::vector<float> tok_logits(
 | 
						|
                logits.begin() + j * n_vocab,
 | 
						|
                logits.begin() + (j + 1) * n_vocab);
 | 
						|
            float prob = softmax(tok_logits)[tokens[start + j + 1]];
 | 
						|
            nll += -std::log(prob);
 | 
						|
            ++count;
 | 
						|
        }
 | 
						|
        // perplexity is e^(average negative log-likelihood)
 | 
						|
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
						|
        fflush(stdout);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
    params.model = "models/llama-7B/ggml-model.bin";
 | 
						|
 | 
						|
    params.n_batch = 512;
 | 
						|
    if (gpt_params_parse(argc, argv, params) == false) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    params.perplexity = true;
 | 
						|
    params.n_batch = std::min(params.n_batch, params.n_ctx);
 | 
						|
 | 
						|
    if (params.n_ctx > 2048) {
 | 
						|
        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | 
						|
                "expect poor results\n", __func__, params.n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | 
						|
 | 
						|
    if (params.seed < 0) {
 | 
						|
        params.seed = time(NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: seed  = %d\n", __func__, params.seed);
 | 
						|
 | 
						|
    std::mt19937 rng(params.seed);
 | 
						|
    if (params.random_prompt) {
 | 
						|
        params.prompt = gpt_random_prompt(rng);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_context * ctx;
 | 
						|
 | 
						|
    // load the model and apply lora adapter, if any
 | 
						|
    ctx = llama_init_from_gpt_params(params);
 | 
						|
    if (ctx == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
						|
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
						|
    }
 | 
						|
 | 
						|
    perplexity(ctx, params);
 | 
						|
 | 
						|
    llama_print_timings(ctx);
 | 
						|
    llama_free(ctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |