mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 c6c4fc081c
			
		
	
	c6c4fc081c
	
	
	
		
			
			* lora : add support for non-llama models ggml-ci * avoid leaking ggml_context on failure cleanup ggml-ci * lora : allow 1d tensors * lora : include embd and output layers in size calculation * fix style
		
			
				
	
	
		
			142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import struct
 | |
| import sys
 | |
| from typing import Any, BinaryIO, Sequence
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| from pathlib import Path
 | |
| if 'NO_LOCAL_GGUF' not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | |
| import gguf
 | |
| 
 | |
| 
 | |
| NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
 | |
| 
 | |
| 
 | |
| def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
 | |
|     fout.write(b"ggla"[::-1])  # magic (ggml lora)
 | |
|     fout.write(struct.pack("i", 1))  # file version
 | |
|     fout.write(struct.pack("i", params["r"]))
 | |
|     # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
 | |
|     # but some models ship a float value instead
 | |
|     # let's convert to int, but fail if lossless conversion is not possible
 | |
|     assert (
 | |
|         int(params["lora_alpha"]) == params["lora_alpha"]
 | |
|     ), "cannot convert float to int losslessly"
 | |
|     fout.write(struct.pack("i", int(params["lora_alpha"])))
 | |
| 
 | |
| 
 | |
| def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
 | |
|     sname = name.encode("utf-8")
 | |
|     fout.write(
 | |
|         struct.pack(
 | |
|             "iii",
 | |
|             len(shape),
 | |
|             len(sname),
 | |
|             NUMPY_TYPE_TO_FTYPE[data_type.name],
 | |
|         )
 | |
|     )
 | |
|     fout.write(struct.pack("i" * len(shape), *shape[::-1]))
 | |
|     fout.write(sname)
 | |
|     fout.seek((fout.tell() + 31) & -32)
 | |
| 
 | |
| 
 | |
| if len(sys.argv) < 2:
 | |
|     print(f"Usage: python {sys.argv[0]} <path> [arch]")
 | |
|     print(
 | |
|         "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
 | |
|     )
 | |
|     print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
 | |
|     sys.exit(1)
 | |
| 
 | |
| input_json = os.path.join(sys.argv[1], "adapter_config.json")
 | |
| input_model = os.path.join(sys.argv[1], "adapter_model.bin")
 | |
| output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
 | |
| 
 | |
| model = torch.load(input_model, map_location="cpu")
 | |
| arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
 | |
| 
 | |
| if arch_name not in gguf.MODEL_ARCH_NAMES.values():
 | |
|     print(f"Error: unsupported architecture {arch_name}")
 | |
|     sys.exit(1)
 | |
| 
 | |
| arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
 | |
| name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
 | |
| 
 | |
| with open(input_json, "r") as f:
 | |
|     params = json.load(f)
 | |
| 
 | |
| if params["peft_type"] != "LORA":
 | |
|     print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
 | |
|     sys.exit(1)
 | |
| 
 | |
| if params["fan_in_fan_out"] is True:
 | |
|     print("Error: param fan_in_fan_out is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| if params["bias"] is not None and params["bias"] != "none":
 | |
|     print("Error: param bias is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| # TODO: these seem to be layers that have been trained but without lora.
 | |
| # doesn't seem widely used but eventually should be supported
 | |
| if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
 | |
|     print("Error: param modules_to_save is not supported")
 | |
|     sys.exit(1)
 | |
| 
 | |
| with open(output_path, "wb") as fout:
 | |
|     fout.truncate()
 | |
| 
 | |
|     write_file_header(fout, params)
 | |
|     for k, v in model.items():
 | |
|         orig_k = k
 | |
|         if k.endswith(".default.weight"):
 | |
|             k = k.replace(".default.weight", ".weight")
 | |
|         if k in ["llama_proj.weight", "llama_proj.bias"]:
 | |
|             continue
 | |
|         if k.endswith("lora_A.weight"):
 | |
|             if v.dtype != torch.float16 and v.dtype != torch.float32:
 | |
|                 v = v.float()
 | |
|             v = v.T
 | |
|         else:
 | |
|             v = v.float()
 | |
| 
 | |
|         t = v.detach().numpy()
 | |
| 
 | |
|         prefix = "base_model.model."
 | |
|         if k.startswith(prefix):
 | |
|             k = k[len(prefix) :]
 | |
| 
 | |
|         lora_suffixes = (".lora_A.weight", ".lora_B.weight")
 | |
|         if k.endswith(lora_suffixes):
 | |
|             suffix = k[-len(lora_suffixes[0]):]
 | |
|             k = k[: -len(lora_suffixes[0])]
 | |
|         else:
 | |
|             print(f"Error: unrecognized tensor name {orig_k}")
 | |
|             sys.exit(1)
 | |
| 
 | |
|         tname = name_map.get_name(k)
 | |
|         if tname is None:
 | |
|             print(f"Error: could not map tensor name {orig_k}")
 | |
|             print(" Note: the arch parameter must be specified if the model is not llama")
 | |
|             sys.exit(1)
 | |
| 
 | |
|         if suffix == ".lora_A.weight":
 | |
|             tname += ".weight.loraA"
 | |
|         elif suffix == ".lora_B.weight":
 | |
|             tname += ".weight.loraB"
 | |
|         else:
 | |
|             assert False
 | |
| 
 | |
|         print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
 | |
|         write_tensor_header(fout, tname, t.shape, t.dtype)
 | |
|         t.tofile(fout)
 | |
| 
 | |
| print(f"Converted {input_json} and {input_model} to {output_path}")
 |