mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 7a2c913e66
			
		
	
	7a2c913e66
	
	
	
		
			
			* Add super wip scripts for multimodal granite gguf Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add example for converting mmgranite to gguf Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * remove hardcoded path Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add vision feature layer to gguf params Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Clean up llava surgery and remove name substitution hacks Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add transformers llava next tensor name mapping Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Make siglip / openclip mutuall exclusive Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix projector linear substitution Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix linear 2 substitution index Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Increase max flattened gridpoints to 64 Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix hardcoded concat for multiple feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Pull vision feature layers out of gguf keys Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * fix num gridpoints and use all layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Avoid dropping last image encoder layer in llava models Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use 10 for max number of patches Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Standardize vision feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Cleanup logs Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Update comment for vision feature layer init Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Update notes for alternative to legacy llm conversion script Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix notes rendering Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add v prefix to vision feature layer log Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use current defaults for feature layer Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use constant for max gridpoints / feat layers, style fixes Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * clarify non-negative feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Remove CLIP_API from func signature Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * USE MAX_IMAGE_FEATURE_LAYERS const in layer calc Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Clarify feature layers are non negative ints and not uint Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix condition for reading feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * pop last llava layer when feature layers are unset Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix unset vision layer 0 Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Update examples/llava/clip.cpp Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com> * Reenable assertion for out of bounds get_rows Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use std vector for gridpoints and feature layers Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Caculate max feature layer at load time Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Include base patch for granite vision allocation Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Fix trailing whitespace Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Add max num patches = 10 back for minicpmv Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use unordered set to store feature layers Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com> Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Use max feature layer for postnorm Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> * Apply suggestions from code review --------- Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com> Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
		
			
				
	
	
		
			412 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import json
 | |
| import re
 | |
| 
 | |
| import torch
 | |
| import numpy as np
 | |
| from gguf import *
 | |
| from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
 | |
| 
 | |
| TEXT = "clip.text"
 | |
| VISION = "clip.vision"
 | |
| 
 | |
| 
 | |
| def k(raw_key: str, arch: str) -> str:
 | |
|     return raw_key.format(arch=arch)
 | |
| 
 | |
| 
 | |
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
 | |
|     if name in (
 | |
|         "logit_scale",
 | |
|         "text_model.embeddings.position_ids",
 | |
|         "vision_model.embeddings.position_ids",
 | |
|     ):
 | |
|         return True
 | |
| 
 | |
|     if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("v") and not has_vision:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("t") and not has_text:
 | |
|         return True
 | |
| 
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def get_tensor_name(name: str) -> str:
 | |
|     # Standardize the transformers llava next keys for
 | |
|     # image newline / mm projector with the classes in haotian-liu LLaVA
 | |
|     if name == "image_newline":
 | |
|         return "model.image_newline"
 | |
|     if name.startswith("multi_modal_projector"):
 | |
|         name = name.replace("multi_modal_projector", "mm")
 | |
|         if "linear_1" in name:
 | |
|             name = name.replace("linear_1", "0")
 | |
|         if "linear_2" in name:
 | |
|             name = name.replace("linear_2", "2")
 | |
|         return name
 | |
| 
 | |
|     if "projection" in name:
 | |
|         return name
 | |
|     if "mm_projector" in name:
 | |
|         name = name.replace("model.mm_projector", "mm")
 | |
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
 | |
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
 | |
|         return name
 | |
| 
 | |
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
 | |
| 
 | |
| 
 | |
| def bytes_to_unicode():
 | |
|     """
 | |
|     Returns list of utf-8 byte and a corresponding list of unicode strings.
 | |
|     The reversible bpe codes work on unicode strings.
 | |
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | |
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | |
|     This is a significant percentage of your normal, say, 32K bpe vocab.
 | |
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | |
|     And avoids mapping to whitespace/control characters the bpe code barfs on.
 | |
|     """
 | |
|     bs = (
 | |
|         list(range(ord("!"), ord("~") + 1))
 | |
|         + list(range(ord("¡"), ord("¬") + 1))
 | |
|         + list(range(ord("®"), ord("ÿ") + 1))
 | |
|     )
 | |
|     cs = bs[:]
 | |
|     n = 0
 | |
|     for b in range(2**8):
 | |
|         if b not in bs:
 | |
|             bs.append(b)
 | |
|             cs.append(2**8 + n)
 | |
|             n += 1
 | |
|     cs = [chr(n) for n in cs]
 | |
|     return dict(zip(bs, cs))
 | |
| 
 | |
| 
 | |
| ap = argparse.ArgumentParser()
 | |
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
 | |
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
 | |
| ap.add_argument("--text-only", action="store_true", required=False,
 | |
|                 help="Save a text-only model. It can't be used to encode images")
 | |
| ap.add_argument("--vision-only", action="store_true", required=False,
 | |
|                 help="Save a vision-only model. It can't be used to encode texts")
 | |
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
 | |
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
 | |
| 
 | |
| # Selectable visual encoders that are compatible with this script
 | |
| encoder_group = ap.add_mutually_exclusive_group()
 | |
| encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
 | |
|                 help="The clip model is from openclip (for ViT-SO400M type))")
 | |
| encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
 | |
|                 help="the visual encoder is Siglip.")
 | |
| 
 | |
| ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
 | |
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
 | |
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
 | |
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
 | |
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
 | |
| default_image_mean = [0.48145466, 0.4578275, 0.40821073]
 | |
| default_image_std = [0.26862954, 0.26130258, 0.27577711]
 | |
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
 | |
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
 | |
| 
 | |
| # with proper
 | |
| args = ap.parse_args()
 | |
| 
 | |
| 
 | |
| if args.text_only and args.vision_only:
 | |
|     print("--text-only and --image-only arguments cannot be specified at the same time.")
 | |
|     exit(1)
 | |
| 
 | |
| if args.use_f32:
 | |
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
 | |
| 
 | |
| # output in the same directory as the model if output_dir is None
 | |
| dir_model = args.model_dir
 | |
| 
 | |
| if (
 | |
|     args.clip_model_is_vision or
 | |
|     not os.path.exists(dir_model + "/vocab.json") or
 | |
|     args.clip_model_is_openclip or
 | |
|     args.clip_model_is_siglip
 | |
| ):
 | |
|     vocab = None
 | |
|     tokens = None
 | |
| else:
 | |
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
 | |
|         vocab = json.load(f)
 | |
|         tokens = [key for key in vocab]
 | |
| 
 | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | |
|     config = json.load(f)
 | |
|     if args.clip_model_is_vision:
 | |
|         v_hparams = config
 | |
|         t_hparams = None
 | |
|     else:
 | |
|         v_hparams = config["vision_config"]
 | |
|         t_hparams = config["text_config"]
 | |
| 
 | |
| # possible data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if args.use_f32:
 | |
|     ftype = 0
 | |
| 
 | |
| if args.clip_model_is_siglip:
 | |
|     model = SiglipVisionModel.from_pretrained(dir_model)
 | |
|     processor = None
 | |
| elif args.clip_model_is_vision or args.clip_model_is_openclip:
 | |
|     model = CLIPVisionModel.from_pretrained(dir_model)
 | |
|     processor = None
 | |
| else:
 | |
|     model = CLIPModel.from_pretrained(dir_model)
 | |
|     processor = CLIPProcessor.from_pretrained(dir_model)
 | |
| 
 | |
| fname_middle = None
 | |
| has_text_encoder = True
 | |
| has_vision_encoder = True
 | |
| has_llava_projector = False
 | |
| if args.text_only:
 | |
|     fname_middle = "text-"
 | |
|     has_vision_encoder = False
 | |
| elif args.llava_projector is not None:
 | |
|     fname_middle = "mmproj-"
 | |
|     has_text_encoder = False
 | |
|     has_llava_projector = True
 | |
| elif args.vision_only:
 | |
|     fname_middle = "vision-"
 | |
|     has_text_encoder = False
 | |
| else:
 | |
|     fname_middle = ""
 | |
| 
 | |
| output_dir = args.output_dir if args.output_dir is not None else dir_model
 | |
| os.makedirs(output_dir, exist_ok=True)
 | |
| output_prefix = os.path.basename(output_dir).replace("ggml_", "")
 | |
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
 | |
| fout = GGUFWriter(path=fname_out, arch="clip")
 | |
| 
 | |
| fout.add_bool("clip.has_text_encoder", has_text_encoder)
 | |
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
 | |
| fout.add_bool("clip.has_llava_projector", has_llava_projector)
 | |
| fout.add_file_type(ftype)
 | |
| model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
 | |
| fout.add_name(model_name)
 | |
| if args.text_only:
 | |
|     fout.add_description("text-only CLIP model")
 | |
| elif args.vision_only and not has_llava_projector:
 | |
|     fout.add_description("vision-only CLIP model")
 | |
| elif has_llava_projector:
 | |
|     fout.add_description("image encoder for LLaVA")
 | |
|     # add projector type
 | |
|     fout.add_string("clip.projector_type", args.projector_type)
 | |
| else:
 | |
|     fout.add_description("two-tower CLIP model")
 | |
| 
 | |
| if has_text_encoder:
 | |
|     assert t_hparams is not None
 | |
|     assert tokens is not None
 | |
|     if args.clip_model_is_siglip:
 | |
|         text_projection_dim = 0
 | |
|     else:
 | |
|         text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
 | |
|     # text_model hparams
 | |
|     fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
 | |
|     fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
 | |
|     fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
 | |
|     fout.add_uint32("clip.text.projection_dim", text_projection_dim)
 | |
|     fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
 | |
|     fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
 | |
|     fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
 | |
|     fout.add_token_list(tokens)
 | |
| 
 | |
| 
 | |
| 
 | |
| def get_non_negative_vision_feature_layers(v_hparams):
 | |
|     """
 | |
|     Determine the vision feature layer(s) for the llava model, which are indices into the
 | |
|     hidden states of the visual encoder. Note that the hidden states array generally takes the
 | |
|     form:
 | |
| 
 | |
|         [<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
 | |
| 
 | |
|     so feature indices should be offset as n+1 to get the output of encoder block n.
 | |
|     We convert all vision feature layers to non-negative so that -1 can be used in
 | |
|     the model as an unset value. If no vision feature layer is found, we leave it unset.
 | |
|     """
 | |
|     num_hidden_layers = v_hparams["num_hidden_layers"]
 | |
|     to_non_negative = lambda layer_idx: layer_idx  if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
 | |
|     feature_layers_key = None
 | |
|     # Key used for llava models in transformers
 | |
|     if "vision_feature_layer" in config:
 | |
|         feature_layers_key = "vision_feature_layer"
 | |
|     # Key used for llava models in the original format
 | |
|     elif "mm_vision_select_layer" in config:
 | |
|         feature_layers_key = "mm_vision_select_layer"
 | |
|     if feature_layers_key is not None:
 | |
|         feature_layers = config[feature_layers_key]
 | |
|         if isinstance(feature_layers, int):
 | |
|             feature_layers = [feature_layers]
 | |
|         return [to_non_negative(feature_layer) for feature_layer in feature_layers]
 | |
| 
 | |
| # Determine if we have explicitly specified vision feature layers in our config
 | |
| feature_layers = get_non_negative_vision_feature_layers(v_hparams)
 | |
| 
 | |
| if has_vision_encoder:
 | |
|     # Siglip does not have a visual projector; set projection dim to 0
 | |
|     if args.clip_model_is_siglip:
 | |
|         visual_projection_dim = 0
 | |
|     else:
 | |
|         visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
 | |
| 
 | |
|     # set vision_model hparams
 | |
|     fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
 | |
|     fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
 | |
|     fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
 | |
|     fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
 | |
|     fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
 | |
|     fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
 | |
|     fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
 | |
|     if feature_layers:
 | |
|         block_count = max(feature_layers)
 | |
|     else:
 | |
|         block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
 | |
|     fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
 | |
|                             #     /**
 | |
|                             #      "image_grid_pinpoints": [
 | |
|                             #         [
 | |
|                             #         336,
 | |
|                             #         672
 | |
|                             #         ],
 | |
|                             #         [
 | |
|                             #         672,
 | |
|                             #         336
 | |
|                             #         ],
 | |
|                             #         [
 | |
|                             #         672,
 | |
|                             #         672
 | |
|                             #         ],
 | |
|                             #         [
 | |
|                             #         1008,
 | |
|                             #         336
 | |
|                             #         ],
 | |
|                             #         [
 | |
|                             #         336,
 | |
|                             #         1008
 | |
|                             #         ]
 | |
|                             #     ],
 | |
|                             #     Flattened:
 | |
|                             #     [
 | |
|                             #         336, 672,
 | |
|                             #         672, 336,
 | |
|                             #         672, 672,
 | |
|                             #         1008, 336,
 | |
|                             #         336, 1008
 | |
|                             #     ]
 | |
|                             #  *
 | |
|                             #  */
 | |
|     if "image_grid_pinpoints" in v_hparams:
 | |
|         # flatten it
 | |
|         image_grid_pinpoints = []
 | |
|         for pinpoint in v_hparams["image_grid_pinpoints"]:
 | |
|             for p in pinpoint:
 | |
|                 image_grid_pinpoints.append(p)
 | |
|         fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
 | |
|     if "image_crop_resolution" in v_hparams:
 | |
|         fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
 | |
|     if "image_aspect_ratio" in v_hparams:
 | |
|         fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
 | |
|     if "image_split_resolution" in v_hparams:
 | |
|         fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
 | |
|     if "mm_patch_merge_type" in v_hparams:
 | |
|         fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
 | |
|     if "mm_projector_type" in v_hparams:
 | |
|         fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
 | |
|     if feature_layers:
 | |
|         fout.add_array("clip.vision.feature_layer", feature_layers)
 | |
| 
 | |
|     if processor is not None:
 | |
|         image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean  # pyright: ignore[reportAttributeAccessIssue]
 | |
|         image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std  # pyright: ignore[reportAttributeAccessIssue]
 | |
|     else:
 | |
|         image_mean = args.image_mean if args.image_mean is not None else default_image_mean
 | |
|         image_std = args.image_std if args.image_std is not None else default_image_std
 | |
|     fout.add_array("clip.vision.image_mean", image_mean)
 | |
|     fout.add_array("clip.vision.image_std", image_std)
 | |
| 
 | |
| use_gelu = v_hparams["hidden_act"] == "gelu"
 | |
| fout.add_bool("clip.use_gelu", use_gelu)
 | |
| 
 | |
| 
 | |
| if has_llava_projector:
 | |
|     # By default, we drop the last layer for llava projector
 | |
|     # models unless we have explicitly set vision feature layers
 | |
|     if feature_layers is None:
 | |
|         model.vision_model.encoder.layers.pop(-1)
 | |
|     else:
 | |
|         model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
 | |
| 
 | |
|     projector = torch.load(args.llava_projector)
 | |
|     for name, data in projector.items():
 | |
|         name = get_tensor_name(name)
 | |
|         # pw and dw conv ndim==4
 | |
|         if data.ndim == 2 or data.ndim == 4:
 | |
|             data = data.squeeze().numpy().astype(np.float16)
 | |
|         else:
 | |
|             data = data.squeeze().numpy().astype(np.float32)
 | |
| 
 | |
|         fout.add_tensor(name, data)
 | |
| 
 | |
|     print("Projector tensors added\n")
 | |
| 
 | |
| state_dict = model.state_dict()
 | |
| for name, data in state_dict.items():
 | |
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
 | |
|         # we don't need this
 | |
|         print(f"skipping parameter: {name}")
 | |
|         continue
 | |
| 
 | |
|     name = get_tensor_name(name)
 | |
|     data = data.squeeze().numpy()
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
| 
 | |
|     # ftype == 0 -> float32, ftype == 1 -> float16
 | |
|     ftype_cur = 0
 | |
|     if n_dims == 4:
 | |
|         print(f"tensor {name} is always saved in f16")
 | |
|         data = data.astype(np.float16)
 | |
|         ftype_cur = 1
 | |
|     elif ftype == 1:
 | |
|         if name[-7:] == ".weight" and n_dims == 2:
 | |
|             print("  Converting to float16")
 | |
|             data = data.astype(np.float16)
 | |
|             ftype_cur = 1
 | |
|         else:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
|     else:
 | |
|         if data.dtype != np.float32:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|     print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | |
|     fout.add_tensor(name, data)
 | |
| 
 | |
| 
 | |
| fout.write_header_to_file()
 | |
| fout.write_kv_data_to_file()
 | |
| fout.write_tensors_to_file()
 | |
| fout.close()
 | |
| 
 | |
| print("Done. Output file: " + fname_out)
 |