mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
		
			
				
	
	
		
			832 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			832 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <unordered_map>
 | 
						|
#include <vector>
 | 
						|
#include <cassert>
 | 
						|
#include <climits>
 | 
						|
#include <cstring>
 | 
						|
#include <cstdarg>
 | 
						|
#include <ctime>
 | 
						|
#include <random>
 | 
						|
#include <stdexcept>
 | 
						|
#include <algorithm>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
 | 
						|
typedef struct {
 | 
						|
    int dim; // transformer dimension
 | 
						|
    int hidden_dim; // for ffn layers
 | 
						|
    int n_layers; // number of layers
 | 
						|
    int n_heads; // number of query heads
 | 
						|
    int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
 | 
						|
    int vocab_size; // vocabulary size, usually 256 (byte-level)
 | 
						|
    int seq_len; // max sequence length
 | 
						|
} Config;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    // token embedding table
 | 
						|
    float* token_embedding_table;    // (vocab_size, dim)
 | 
						|
    // weights for rmsnorms
 | 
						|
    float* rms_att_weight; // (layer, dim) rmsnorm weights
 | 
						|
    float* rms_ffn_weight; // (layer, dim)
 | 
						|
    // weights for matmuls
 | 
						|
    float* wq; // (layer, dim, dim)
 | 
						|
    float* wk; // (layer, dim, dim)
 | 
						|
    float* wv; // (layer, dim, dim)
 | 
						|
    float* wo; // (layer, dim, dim)
 | 
						|
    // weights for ffn
 | 
						|
    float* w1; // (layer, hidden_dim, dim)
 | 
						|
    float* w2; // (layer, dim, hidden_dim)
 | 
						|
    float* w3; // (layer, hidden_dim, dim)
 | 
						|
    // final rmsnorm
 | 
						|
    float* rms_final_weight; // (dim,)
 | 
						|
    // freq_cis for RoPE relatively positional embeddings
 | 
						|
    // float* freq_cis_real; // (seq_len, dim/2)
 | 
						|
    // float* freq_cis_imag; // (seq_len, dim/2)
 | 
						|
    // (optional) classifier weights for the logits, on the last layer
 | 
						|
    //float* wcls;
 | 
						|
} TransformerWeights;
 | 
						|
 | 
						|
void malloc_weights(TransformerWeights* w, Config* p) {
 | 
						|
    // we calloc instead of malloc to keep valgrind happy
 | 
						|
    w->token_embedding_table = new float[p->vocab_size * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
 | 
						|
 | 
						|
    w->rms_att_weight = new float[p->n_layers * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
 | 
						|
 | 
						|
    w->rms_ffn_weight = new float[p->n_layers * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
 | 
						|
 | 
						|
    w->wq = new float[p->n_layers * p->dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | 
						|
 | 
						|
    w->wk = new float[p->n_layers * p->dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | 
						|
 | 
						|
    w->wv = new float[p->n_layers * p->dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | 
						|
 | 
						|
    w->wo = new float[p->n_layers * p->dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | 
						|
 | 
						|
    w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
 | 
						|
 | 
						|
    w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
 | 
						|
 | 
						|
    w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
 | 
						|
 | 
						|
    w->rms_final_weight = new float[p->dim]();
 | 
						|
    printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
 | 
						|
}
 | 
						|
 | 
						|
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
 | 
						|
    if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
 | 
						|
    if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
 | 
						|
    if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
 | 
						|
    if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
 | 
						|
    if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
 | 
						|
    if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
 | 
						|
    if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
 | 
						|
    if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
 | 
						|
    if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
 | 
						|
    if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
 | 
						|
    if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void free_weights(TransformerWeights* w) {
 | 
						|
    delete w->token_embedding_table;
 | 
						|
    delete w->rms_att_weight;
 | 
						|
    delete w->rms_ffn_weight;
 | 
						|
    delete w->wq;
 | 
						|
    delete w->wk;
 | 
						|
    delete w->wv;
 | 
						|
    delete w->wo;
 | 
						|
    delete w->w1;
 | 
						|
    delete w->w2;
 | 
						|
    delete w->w3;
 | 
						|
    delete w->rms_final_weight;
 | 
						|
}
 | 
						|
 | 
						|
void print_sample_weights(TransformerWeights *w){
 | 
						|
    printf("----- Quick print of first of the weight vales of all the variables\n");
 | 
						|
    printf("%f\n", w->token_embedding_table[0]);
 | 
						|
    printf("%f\n", w->rms_att_weight[0]);
 | 
						|
    printf("%f\n", w->rms_ffn_weight[0]);
 | 
						|
 | 
						|
    printf("%f\n", w->wq[0]);
 | 
						|
    printf("%f\n", w->wk[0]);
 | 
						|
    printf("%f\n", w->wv[0]);
 | 
						|
    printf("%f\n", w->wo[0]);
 | 
						|
    printf("%f\n", w->w1[0]);
 | 
						|
    printf("%f\n", w->w2[0]);
 | 
						|
    printf("%f\n", w->w3[0]);
 | 
						|
    printf("%f\n", w->rms_att_weight[0]);
 | 
						|
}
 | 
						|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
 | 
						|
 | 
						|
struct llama_vocab {
 | 
						|
    using id    = int32_t;
 | 
						|
    using token = std::string;
 | 
						|
 | 
						|
    struct token_score {
 | 
						|
        token tok;
 | 
						|
        float score;
 | 
						|
    };
 | 
						|
 | 
						|
    std::unordered_map<token, id> token_to_id;
 | 
						|
    std::vector<token_score> id_to_token;
 | 
						|
};
 | 
						|
 | 
						|
struct my_llama_hparams {
 | 
						|
    uint32_t n_vocab = 32000;
 | 
						|
    uint32_t n_ctx   = 512;   // this is provided as user input?
 | 
						|
    uint32_t n_embd  = 4096;
 | 
						|
    uint32_t n_mult  = 4;
 | 
						|
    uint32_t n_head  = 32;
 | 
						|
    uint32_t n_layer = 32;
 | 
						|
    uint32_t n_rot   = 64;
 | 
						|
    bool operator!=(const my_llama_hparams& other) const {
 | 
						|
        return memcmp(this, &other, sizeof(my_llama_hparams));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct my_llama_layer {
 | 
						|
    // normalization
 | 
						|
    struct ggml_tensor * attention_norm;
 | 
						|
 | 
						|
    // attention
 | 
						|
    struct ggml_tensor * wq;
 | 
						|
    struct ggml_tensor * wk;
 | 
						|
    struct ggml_tensor * wv;
 | 
						|
    struct ggml_tensor * wo;
 | 
						|
 | 
						|
    // normalization
 | 
						|
    struct ggml_tensor * ffn_norm;
 | 
						|
 | 
						|
    // ff
 | 
						|
    struct ggml_tensor * w1;
 | 
						|
    struct ggml_tensor * w2;
 | 
						|
    struct ggml_tensor * w3;
 | 
						|
};
 | 
						|
 | 
						|
struct my_llama_model {
 | 
						|
    struct ggml_context * ctx = NULL;
 | 
						|
 | 
						|
    my_llama_hparams hparams;
 | 
						|
 | 
						|
    struct ggml_tensor * tok_embeddings;
 | 
						|
 | 
						|
    struct ggml_tensor * norm;
 | 
						|
    struct ggml_tensor * output;
 | 
						|
 | 
						|
    std::vector<my_llama_layer> layers;
 | 
						|
 | 
						|
    uint32_t train_its = 0;
 | 
						|
    uint32_t train_samples = 0;
 | 
						|
    uint32_t train_tokens = 0;
 | 
						|
};
 | 
						|
 | 
						|
struct train_params {
 | 
						|
    const char * fn_vocab_model;
 | 
						|
    const char * fn_llama2c_model;
 | 
						|
    const char * fn_llama2c_output_model;
 | 
						|
    const char * fn_train_data;
 | 
						|
    const char * fn_checkpoint_in;
 | 
						|
    const char * fn_checkpoint_out;
 | 
						|
    const char * fn_model_out;
 | 
						|
 | 
						|
    uint32_t seed;
 | 
						|
 | 
						|
    int n_ctx;
 | 
						|
    int n_embd;
 | 
						|
    int n_mult;
 | 
						|
    int n_head;
 | 
						|
    int n_layer;
 | 
						|
    int n_rotmax;
 | 
						|
 | 
						|
    int n_threads;
 | 
						|
    int n_batch;
 | 
						|
    int n_examples;
 | 
						|
    int n_predict;
 | 
						|
 | 
						|
    int print_info_interval;
 | 
						|
    int print_details_interval;
 | 
						|
 | 
						|
    bool samples_start_after_nl;
 | 
						|
    bool use_adam;
 | 
						|
    bool use_flash;
 | 
						|
    bool use_scratch;
 | 
						|
 | 
						|
    // only adam
 | 
						|
    int   warmup;
 | 
						|
    int   cos_decay_steps;
 | 
						|
    float cos_decay_restart;
 | 
						|
    float cos_decay_alpha;
 | 
						|
 | 
						|
    int   lbfgs_n_iter;
 | 
						|
    int   adam_n_iter;
 | 
						|
    float adam_alpha;
 | 
						|
    float adam_decay;
 | 
						|
 | 
						|
    int mem_model_gb;
 | 
						|
    int mem_compute_gb;
 | 
						|
    int mem_compute0_gb;
 | 
						|
    int mem_compute1_gb;
 | 
						|
};
 | 
						|
 | 
						|
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
 | 
						|
    const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
 | 
						|
    return n_ff;
 | 
						|
}
 | 
						|
 | 
						|
void print_params(struct my_llama_hparams * params) {
 | 
						|
    printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
 | 
						|
    printf("%s: n_ctx:   %d\n", __func__, params->n_ctx);
 | 
						|
    printf("%s: n_embd:  %d\n", __func__, params->n_embd);
 | 
						|
    printf("%s: n_mult:  %d\n", __func__, params->n_mult);
 | 
						|
    printf("%s: n_head:  %d\n", __func__, params->n_head);
 | 
						|
    printf("%s: n_ff:    %d\n", __func__, get_n_ff(params));
 | 
						|
    printf("%s: n_layer: %d\n", __func__, params->n_layer);
 | 
						|
    printf("%s: n_rot:   %d\n", __func__, params->n_rot);
 | 
						|
}
 | 
						|
 | 
						|
void init_model(struct my_llama_model * model) {
 | 
						|
    const auto & hparams = model->hparams;
 | 
						|
 | 
						|
    const uint32_t n_embd  = hparams.n_embd;
 | 
						|
    const uint32_t n_layer = hparams.n_layer;
 | 
						|
    const uint32_t n_vocab = hparams.n_vocab;
 | 
						|
 | 
						|
    const uint32_t n_ff = get_n_ff(&hparams);
 | 
						|
    struct ggml_context * ctx = model->ctx;
 | 
						|
 | 
						|
    model->train_its = 0;
 | 
						|
    model->train_samples = 0;
 | 
						|
    model->train_tokens = 0;
 | 
						|
 | 
						|
    model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | 
						|
    printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
 | 
						|
 | 
						|
    model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
    printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
 | 
						|
 | 
						|
    model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
 | 
						|
 | 
						|
    // printing the per-layer allocations here so we dont print in the for loop.
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
 | 
						|
 | 
						|
    printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
 | 
						|
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
 | 
						|
    printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
 | 
						|
 | 
						|
    ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
 | 
						|
    ggml_set_name(model->norm,           "norm.weight");
 | 
						|
    ggml_set_name(model->output,         "output.weight");
 | 
						|
 | 
						|
    model->layers.resize(n_layer);
 | 
						|
    for (uint32_t i = 0; i < n_layer; ++i) {
 | 
						|
        auto & layer = model->layers[i];
 | 
						|
 | 
						|
        std::string layers_i = "layers." + std::to_string(i);
 | 
						|
 | 
						|
        layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
 | 
						|
        layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | 
						|
        layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | 
						|
        layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | 
						|
        layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | 
						|
 | 
						|
        layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
 | 
						|
        layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | 
						|
        layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
 | 
						|
        layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | 
						|
 | 
						|
        ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
 | 
						|
 | 
						|
        ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
 | 
						|
        ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
 | 
						|
        ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
 | 
						|
        ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
 | 
						|
 | 
						|
        ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
 | 
						|
 | 
						|
        ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
 | 
						|
        ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
 | 
						|
        ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | 
						|
    float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | 
						|
    return *ptr;
 | 
						|
}
 | 
						|
 | 
						|
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | 
						|
    int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | 
						|
    return *ptr;
 | 
						|
}
 | 
						|
 | 
						|
void print_row(struct ggml_tensor * probs, int i) {
 | 
						|
    for (int k = 0; k < probs->ne[0]; ++k) {
 | 
						|
        float p = get_f32_2d(probs, k, i);
 | 
						|
        printf(" %f", p);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
void print_matrix(struct ggml_tensor * probs) {
 | 
						|
    assert(probs->n_dims == 2);
 | 
						|
    for (int i = 0; i < probs->ne[1]; ++i) {
 | 
						|
        for (int k = 0; k < probs->ne[0]; ++k) {
 | 
						|
            float p = get_f32_2d(probs, k, i);
 | 
						|
            printf(" %.2f", p);
 | 
						|
        }
 | 
						|
        printf("\n");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __GNUC__
 | 
						|
#ifdef __MINGW32__
 | 
						|
__attribute__((format(gnu_printf, 1, 2)))
 | 
						|
#else
 | 
						|
__attribute__((format(printf, 1, 2)))
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
static std::string format(const char * fmt, ...) {
 | 
						|
    va_list ap, ap2;
 | 
						|
    va_start(ap, fmt);
 | 
						|
    va_copy(ap2, ap);
 | 
						|
    int size = vsnprintf(NULL, 0, fmt, ap);
 | 
						|
    GGML_ASSERT(size >= 0 && size < INT_MAX);
 | 
						|
    std::vector<char> buf(size + 1);
 | 
						|
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
 | 
						|
    GGML_ASSERT(size2 == size);
 | 
						|
    va_end(ap2);
 | 
						|
    va_end(ap);
 | 
						|
    return std::string(buf.data(), size);
 | 
						|
}
 | 
						|
 | 
						|
struct llama_file {
 | 
						|
    // use FILE * so we don't have to re-open the file to mmap
 | 
						|
    FILE * fp;
 | 
						|
    size_t size;
 | 
						|
 | 
						|
    llama_file(const char * fname, const char * mode) {
 | 
						|
        fp = std::fopen(fname, mode);
 | 
						|
        if (fp == NULL) {
 | 
						|
            size = 0;
 | 
						|
        } else {
 | 
						|
            seek(0, SEEK_END);
 | 
						|
            size = tell();
 | 
						|
            seek(0, SEEK_SET);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t tell() const {
 | 
						|
#ifdef _WIN32
 | 
						|
        __int64 ret = _ftelli64(fp);
 | 
						|
#else
 | 
						|
        long ret = std::ftell(fp);
 | 
						|
#endif
 | 
						|
        GGML_ASSERT(ret != -1); // this really shouldn't fail
 | 
						|
        return (size_t) ret;
 | 
						|
    }
 | 
						|
 | 
						|
    void seek(size_t offset, int whence) {
 | 
						|
#ifdef _WIN32
 | 
						|
        int ret = _fseeki64(fp, (__int64) offset, whence);
 | 
						|
#else
 | 
						|
        int ret = std::fseek(fp, (long) offset, whence);
 | 
						|
#endif
 | 
						|
        GGML_ASSERT(ret == 0); // same
 | 
						|
    }
 | 
						|
 | 
						|
    void read_raw(void * ptr, size_t size) {
 | 
						|
        if (size == 0) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        errno = 0;
 | 
						|
        std::size_t ret = std::fread(ptr, size, 1, fp);
 | 
						|
        if (ferror(fp)) {
 | 
						|
            throw std::runtime_error(format("read error: %s", strerror(errno)));
 | 
						|
        }
 | 
						|
        if (ret != 1) {
 | 
						|
            throw std::runtime_error(std::string("unexpectedly reached end of file"));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    std::uint32_t read_u32() {
 | 
						|
        std::uint32_t ret;
 | 
						|
        read_raw(&ret, sizeof(ret));
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    std::float_t read_f32() {
 | 
						|
        std::float_t ret;
 | 
						|
        read_raw(&ret, sizeof(ret));
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    std::string read_string(std::uint32_t len) {
 | 
						|
        std::vector<char> chars(len);
 | 
						|
        read_raw(chars.data(), len);
 | 
						|
        return std::string(chars.data(), len);
 | 
						|
    }
 | 
						|
 | 
						|
    void write_raw(const void * ptr, size_t size) {
 | 
						|
        if (size == 0) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        errno = 0;
 | 
						|
        size_t ret = std::fwrite(ptr, size, 1, fp);
 | 
						|
        if (ret != 1) {
 | 
						|
            throw std::runtime_error(format("write error: %s", strerror(errno)));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void write_u32(std::uint32_t val) {
 | 
						|
        write_raw(&val, sizeof(val));
 | 
						|
    }
 | 
						|
 | 
						|
    ~llama_file() {
 | 
						|
        if (fp) {
 | 
						|
            std::fclose(fp);
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
 | 
						|
    if (tensor == NULL) {
 | 
						|
        file->write_u32(0);
 | 
						|
        file->write_u32(0);
 | 
						|
        file->write_u32(GGML_TYPE_F32);
 | 
						|
        file->seek((0-file->tell()) & 31, SEEK_CUR);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    const char * name = ggml_get_name(tensor);
 | 
						|
    uint32_t name_len = strlen(name);
 | 
						|
    uint32_t nd = tensor->n_dims;
 | 
						|
    uint32_t ne[4] = { (uint32_t)tensor->ne[0],
 | 
						|
                       (uint32_t)tensor->ne[1],
 | 
						|
                       (uint32_t)tensor->ne[2],
 | 
						|
                       (uint32_t)tensor->ne[3] };
 | 
						|
    file->write_u32(nd);
 | 
						|
    file->write_u32(name_len);
 | 
						|
    file->write_u32(tensor->type);
 | 
						|
    file->write_raw(ne, sizeof(ne[0]) * nd);
 | 
						|
    file->write_raw(name, name_len);
 | 
						|
    file->seek((0-file->tell()) & 31, SEEK_CUR);
 | 
						|
    file->write_raw(tensor->data, ggml_nbytes(tensor));
 | 
						|
}
 | 
						|
 | 
						|
bool is_ggml_file(const char *filename) {
 | 
						|
    llama_file file(filename, "rb");
 | 
						|
    if (file.size < 4) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    uint32_t magic = file.read_u32();
 | 
						|
    return magic == GGUF_MAGIC;
 | 
						|
}
 | 
						|
 | 
						|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
 | 
						|
    // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
 | 
						|
    if (is_ggml_file(filename)) {
 | 
						|
 | 
						|
        struct llama_context_params llama_params = llama_context_default_params();
 | 
						|
        llama_params.vocab_only = true;
 | 
						|
 | 
						|
        struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
 | 
						|
        struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
 | 
						|
 | 
						|
        std::vector<const char *> strings;
 | 
						|
        std::vector<float> scores;
 | 
						|
        int n_vocab = llama_n_vocab(lctx);
 | 
						|
        strings.resize(n_vocab, NULL);
 | 
						|
        scores.resize(n_vocab, 0);
 | 
						|
        n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
 | 
						|
        GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
 | 
						|
        vocab->id_to_token.resize(n_vocab);
 | 
						|
        for (int i=0; i<n_vocab; ++i) {
 | 
						|
            std::string tok   = std::string(strings[i]);
 | 
						|
            float       score = scores[i];
 | 
						|
            vocab->id_to_token[i].tok   = tok;
 | 
						|
            vocab->id_to_token[i].score = score;
 | 
						|
            vocab->token_to_id.emplace(tok, i);
 | 
						|
        }
 | 
						|
        llama_free(lctx);
 | 
						|
        llama_free_model(lmodel);
 | 
						|
    } else { // assume llama2.c vocabulary
 | 
						|
        printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
 | 
						|
        llama_file file(filename, "rb");
 | 
						|
        uint32_t n_vocab = config->vocab_size;
 | 
						|
        /* uint32_t max_token_length =  */ file.read_u32(); // unused
 | 
						|
        vocab->id_to_token.resize(n_vocab);
 | 
						|
        for (uint32_t i=0; i<n_vocab; ++i) {
 | 
						|
            float_t score = file.read_f32();
 | 
						|
            uint32_t len = file.read_u32();
 | 
						|
            std::string tok = file.read_string(len);
 | 
						|
            vocab->id_to_token[i].tok = tok;
 | 
						|
            vocab->id_to_token[i].score = score;
 | 
						|
            vocab->token_to_id.emplace(tok, i);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
 | 
						|
    int ct;
 | 
						|
    switch (gg_weights->n_dims){
 | 
						|
        case 1:
 | 
						|
            ct = 0;
 | 
						|
            for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
 | 
						|
                float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
 | 
						|
                *ptr = karpathy_weights[ct];
 | 
						|
                ct++;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            ct = 0;
 | 
						|
            for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
 | 
						|
                for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
 | 
						|
                    float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
 | 
						|
                    *ptr = karpathy_weights[ct];
 | 
						|
                    ct++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            ct = 0;
 | 
						|
            for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
 | 
						|
                for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
 | 
						|
                    for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
 | 
						|
                        float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
 | 
						|
                        *ptr = karpathy_weights[ct];
 | 
						|
                        ct++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
 | 
						|
    struct llama_file file(filename, "wb");
 | 
						|
    if (file.fp == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
#pragma message("TODO: implement file saving using gguf")
 | 
						|
    (void) vocab;
 | 
						|
    (void) model;
 | 
						|
    (void) w;
 | 
						|
//    // write_magic
 | 
						|
//    file.write_u32(LLAMA_FILE_MAGIC);   // magic
 | 
						|
//    file.write_u32(LLAMA_FILE_VERSION); // version
 | 
						|
//    // write_hparams
 | 
						|
//    file.write_u32(model->hparams.n_vocab);
 | 
						|
//    file.write_u32(model->hparams.n_embd);
 | 
						|
//    file.write_u32(model->hparams.n_mult);
 | 
						|
//    file.write_u32(model->hparams.n_head);
 | 
						|
//    file.write_u32(model->hparams.n_layer);
 | 
						|
//    file.write_u32(model->hparams.n_rot);
 | 
						|
//    file.write_u32(LLAMA_FTYPE_ALL_F32);
 | 
						|
//
 | 
						|
//    // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
 | 
						|
//    uint32_t n_vocab = model->hparams.n_vocab;
 | 
						|
//    for (uint32_t i = 0; i < n_vocab; i++) {
 | 
						|
//        const auto & token_score = vocab->id_to_token.at(i);
 | 
						|
//        file.write_u32((uint32_t) token_score.tok.size());
 | 
						|
//        file.write_raw(token_score.tok.data(), token_score.tok.size());
 | 
						|
//        file.write_raw(&token_score.score, sizeof(token_score.score));
 | 
						|
//    }
 | 
						|
//
 | 
						|
//    // stuff AK weights into GG weights one by one.
 | 
						|
//    // w->token_embedding_table -> model->tok_embeddings
 | 
						|
//    // float*                   -> struct ggml_tensor
 | 
						|
//    stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
 | 
						|
//    stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
 | 
						|
//
 | 
						|
//    stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
 | 
						|
//    //print_row(model->norm, 0);
 | 
						|
//
 | 
						|
//    // for rms-att-weight
 | 
						|
//    int row_length = model->hparams.n_embd;
 | 
						|
//    const auto & hparams = model->hparams;
 | 
						|
//    //int n_ff = model->hparams.n_embd;
 | 
						|
//    int n_ff = get_n_ff(&hparams);
 | 
						|
//
 | 
						|
//    for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
 | 
						|
//        auto & layer = model->layers[i];
 | 
						|
//        // 1d
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.ffn_norm      , &w->rms_ffn_weight[i*row_length]);
 | 
						|
//
 | 
						|
//        // from 3d matrix layer x dim x dim to 2d matrix dim x dim
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.wq            , &w->wq[i*row_length*row_length]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.wk            , &w->wk[i*row_length*row_length]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.wv            , &w->wv[i*row_length*row_length]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.wo            , &w->wo[i*row_length*row_length]);
 | 
						|
//
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.w1            , &w->w1[i*row_length*n_ff]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.w2            , &w->w2[i*n_ff*row_length]);
 | 
						|
//        stuff_karpathy_weights_into_gg(layer.w3            , &w->w3[i*row_length*n_ff]);
 | 
						|
//    }
 | 
						|
//    // write tensors
 | 
						|
//    write_tensor(&file, model->tok_embeddings);
 | 
						|
//    write_tensor(&file, model->norm);
 | 
						|
//    write_tensor(&file, model->output); // ?
 | 
						|
//    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | 
						|
//        auto & layer = model->layers[i];
 | 
						|
//
 | 
						|
//        write_tensor(&file, layer.attention_norm);
 | 
						|
//        write_tensor(&file, layer.wq);
 | 
						|
//        write_tensor(&file, layer.wk);
 | 
						|
//        write_tensor(&file, layer.wv);
 | 
						|
//        write_tensor(&file, layer.wo);
 | 
						|
//        write_tensor(&file, layer.ffn_norm);
 | 
						|
//        write_tensor(&file, layer.w1);
 | 
						|
//        write_tensor(&file, layer.w2);
 | 
						|
//        write_tensor(&file, layer.w3);
 | 
						|
//    }
 | 
						|
}
 | 
						|
 | 
						|
struct train_params get_default_train_params() {
 | 
						|
    struct train_params params;
 | 
						|
    params.fn_vocab_model    = "models/ggml-vocab.bin";
 | 
						|
    params.fn_llama2c_output_model = "ak_llama_model.bin";
 | 
						|
    params.fn_train_data     = "shakespeare.txt";
 | 
						|
    params.fn_checkpoint_in  = "checkpoint.bin";
 | 
						|
    params.fn_checkpoint_out = "checkpoint.bin";
 | 
						|
    params.fn_model_out      = "ggml-checkpoint-f32.bin";
 | 
						|
 | 
						|
    params.seed       =   -1;
 | 
						|
 | 
						|
    params.n_ctx      =  128;
 | 
						|
    params.n_embd     =  256;
 | 
						|
    params.n_mult     =  256;
 | 
						|
    params.n_head     =    8;
 | 
						|
    params.n_layer    =   16;
 | 
						|
    params.n_rotmax   =   64;
 | 
						|
 | 
						|
    params.n_threads  =    6;
 | 
						|
    params.n_batch    =    8;
 | 
						|
    params.n_examples =    8;
 | 
						|
    params.n_predict  = 1024;
 | 
						|
 | 
						|
    params.print_info_interval    = 1;
 | 
						|
    params.print_details_interval = 2;
 | 
						|
 | 
						|
    params.samples_start_after_nl = false;
 | 
						|
    params.use_adam               = true;
 | 
						|
    params.use_flash              = true;
 | 
						|
    params.use_scratch            = true;
 | 
						|
 | 
						|
    // only adam
 | 
						|
    params.warmup            =  100;
 | 
						|
    params.cos_decay_steps   = 1000;
 | 
						|
    params.cos_decay_restart = 1.1f;
 | 
						|
    params.cos_decay_alpha   = 0.0f;
 | 
						|
 | 
						|
    params.lbfgs_n_iter      = 16;
 | 
						|
    params.adam_n_iter       = 16;
 | 
						|
    params.adam_alpha        = 1e-3f;
 | 
						|
    params.adam_decay        = 1e-3f;
 | 
						|
 | 
						|
    params.mem_model_gb   = 2;
 | 
						|
    params.mem_compute_gb = 24;
 | 
						|
    params.mem_compute0_gb = 8;
 | 
						|
    params.mem_compute1_gb = 2;
 | 
						|
 | 
						|
    return params;
 | 
						|
}
 | 
						|
 | 
						|
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
 | 
						|
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    fprintf(stderr, "options:\n");
 | 
						|
    fprintf(stderr, "  -h, --help                       show this help message and exit\n");
 | 
						|
    fprintf(stderr, "  --copy-vocab-from-model FNAME    llama2.c vocabulary or ggml model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
 | 
						|
    fprintf(stderr, "  --llama2c-model FNAME            [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
 | 
						|
    fprintf(stderr, "  --llama2c-output-model FNAME     model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
}
 | 
						|
 | 
						|
bool params_parse(int argc, char ** argv, struct train_params * params) {
 | 
						|
    bool invalid_param = false;
 | 
						|
    bool reqd_param_found = false;
 | 
						|
    std::string arg;
 | 
						|
    struct train_params default_params = get_default_train_params();
 | 
						|
    const std::string arg_prefix = "--";
 | 
						|
 | 
						|
    for (int i = 1; i < argc; i++) {
 | 
						|
        arg = argv[i];
 | 
						|
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | 
						|
            std::replace(arg.begin(), arg.end(), '_', '-');
 | 
						|
        }
 | 
						|
 | 
						|
        if (arg == "--copy-vocab-from-model") {
 | 
						|
            if (++i >= argc) {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params->fn_vocab_model = argv[i];
 | 
						|
        } else if (arg == "--llama2c-model") {
 | 
						|
            if (++i >= argc) {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            reqd_param_found = true;
 | 
						|
            params->fn_llama2c_model = argv[i];
 | 
						|
        } else if (arg == "--llama2c-output-model") {
 | 
						|
            if (++i >= argc) {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params->fn_llama2c_output_model = argv[i];
 | 
						|
        } else if (arg == "-h" || arg == "--help") {
 | 
						|
            print_usage(argc, argv, &default_params);
 | 
						|
            exit(0);
 | 
						|
        } else {
 | 
						|
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | 
						|
            print_usage(argc, argv, &default_params);
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (invalid_param) {
 | 
						|
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | 
						|
        print_usage(argc, argv, &default_params);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    if (!reqd_param_found){
 | 
						|
        fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
 | 
						|
        print_usage(argc, argv, &default_params);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    struct train_params params = get_default_train_params();
 | 
						|
    if (!params_parse(argc, argv, ¶ms)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    Config config;
 | 
						|
    TransformerWeights weights;
 | 
						|
    {
 | 
						|
        FILE *file = fopen(params.fn_llama2c_model, "rb");
 | 
						|
        if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
 | 
						|
        // read in the config header
 | 
						|
        if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
 | 
						|
        // read in the Transformer weights
 | 
						|
        malloc_weights(&weights, &config);
 | 
						|
        if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
 | 
						|
        fclose(file);
 | 
						|
    }
 | 
						|
 | 
						|
    struct llama_vocab vocab;
 | 
						|
    load_vocab(params.fn_vocab_model, &config, &vocab);
 | 
						|
 | 
						|
    struct my_llama_model model;
 | 
						|
    model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
 | 
						|
    model.hparams.n_ctx   = params.n_ctx;
 | 
						|
    model.hparams.n_embd  = config.dim; //params.n_embd;
 | 
						|
    model.hparams.n_mult  = 32;//params.n_mult;
 | 
						|
    model.hparams.n_head  = config.n_heads; //params.n_head;
 | 
						|
    model.hparams.n_layer = config.n_layers; //params.n_layer;
 | 
						|
    model.hparams.n_rot   = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
 | 
						|
    print_params(&model.hparams);
 | 
						|
    struct ggml_init_params lcparams;
 | 
						|
    lcparams.mem_size   = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
 | 
						|
    lcparams.mem_buffer = NULL;
 | 
						|
    lcparams.no_alloc   = false;
 | 
						|
 | 
						|
    model.ctx = ggml_init(lcparams);
 | 
						|
 | 
						|
    init_model(&model);
 | 
						|
    save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
 | 
						|
 | 
						|
    printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
 | 
						|
 | 
						|
    ggml_free(model.ctx);
 | 
						|
    free_weights(&weights);
 | 
						|
    return 0;
 | 
						|
}
 |