mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 7dcbe39d36
			
		
	
	7dcbe39d36
	
	
	
		
			
			* TruthfulQA: 1st attempt, does not look like it is working The same implementation can be used for HellaSwag as well, so I converted a HellaSwag validation dataset to the binary format used here and tested with that. The score is only around 50, so something is not quite right. * TruthfulQA: works but the result is bad I know it works because if I convert the HellaSwag validation data to the binary format used in the truthful_qa_score() function I get the exact same result as from the hellaswag_score() function. But I guess, the questions are tricky and the way I have done the combination of question + answer is very likely not the best. The TruthfulQA validation dataset contains 817 questions, with random chance result around 19%. With this version I get 29.1% for Mistral-7B and 55.2% for Mistral-7B-Instruct-v0.2. The HF leader board results for these two models are 42.2% and 68.3%, respectively. * TruthfulQA: fix random sample * TruthfulQA: prepare tasks in parallel for large test datasets * Rename truthful_qa to multiple_choice * Make MSVC happy I had forgotten that MSVC does not make constexpr's available inside a lambda. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
		
			
				
	
	
		
			256 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include "sampling.h"
 | |
| 
 | |
| #define LOG_NO_FILE_LINE_FUNCTION
 | |
| #include "log.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <random>
 | |
| #include <thread>
 | |
| #include <unordered_map>
 | |
| #include <tuple>
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #define DIRECTORY_SEPARATOR '\\'
 | |
| #else
 | |
| #define DIRECTORY_SEPARATOR '/'
 | |
| #endif // _WIN32
 | |
| 
 | |
| #define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
 | |
| #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
 | |
| 
 | |
| #define print_build_info() do {                                                                     \
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);           \
 | |
|     fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
 | |
| } while(0)
 | |
| 
 | |
| // build info
 | |
| extern int LLAMA_BUILD_NUMBER;
 | |
| extern char const *LLAMA_COMMIT;
 | |
| extern char const *LLAMA_COMPILER;
 | |
| extern char const *LLAMA_BUILD_TARGET;
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| int32_t get_num_physical_cores();
 | |
| 
 | |
| struct gpt_params {
 | |
|     uint32_t seed                           = -1;    // RNG seed
 | |
| 
 | |
|     int32_t n_threads                       = get_num_physical_cores();
 | |
|     int32_t n_threads_draft                 = -1;
 | |
|     int32_t n_threads_batch                 = -1;    // number of threads to use for batch processing (-1 = use n_threads)
 | |
|     int32_t n_threads_batch_draft           = -1;
 | |
|     int32_t n_predict                       = -1;    // new tokens to predict
 | |
|     int32_t n_ctx                           = 512;   // context size
 | |
|     int32_t n_batch                         = 512;   // batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_keep                          = 0;     // number of tokens to keep from initial prompt
 | |
|     int32_t n_draft                         = 8;     // number of tokens to draft during speculative decoding
 | |
|     int32_t n_chunks                        = -1;    // max number of chunks to process (-1 = unlimited)
 | |
|     int32_t n_parallel                      = 1;     // number of parallel sequences to decode
 | |
|     int32_t n_sequences                     = 1;     // number of sequences to decode
 | |
|     float   p_accept                        = 0.5f;  // speculative decoding accept probability
 | |
|     float   p_split                         = 0.1f;  // speculative decoding split probability
 | |
|     int32_t n_gpu_layers                    = -1;    // number of layers to store in VRAM (-1 - use default)
 | |
|     int32_t n_gpu_layers_draft              = -1;    // number of layers to store in VRAM for the draft model (-1 - use default)
 | |
|     llama_split_mode split_mode             = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
 | |
|     int32_t main_gpu                        = 0;     // the GPU that is used for scratch and small tensors
 | |
|     float   tensor_split[LLAMA_MAX_DEVICES] = {0};   // how split tensors should be distributed across GPUs
 | |
|     int32_t n_beams                         = 0;     // if non-zero then use beam search of given width.
 | |
|     int32_t grp_attn_n                      = 1;     // group-attention factor
 | |
|     int32_t grp_attn_w                      = 512;   // group-attention width
 | |
|     int32_t n_print                         = -1;    // print token count every n tokens (-1 = disabled)
 | |
|     float   rope_freq_base                  = 0.0f;  // RoPE base frequency
 | |
|     float   rope_freq_scale                 = 0.0f;  // RoPE frequency scaling factor
 | |
|     float   yarn_ext_factor                 = -1.0f; // YaRN extrapolation mix factor
 | |
|     float   yarn_attn_factor                = 1.0f;  // YaRN magnitude scaling factor
 | |
|     float   yarn_beta_fast                  = 32.0f; // YaRN low correction dim
 | |
|     float   yarn_beta_slow                  = 1.0f;  // YaRN high correction dim
 | |
|     int32_t yarn_orig_ctx                   = 0;     // YaRN original context length
 | |
|     int8_t  rope_scaling_type               = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
 | |
|                                                                               //       pinging @cebtenzzre
 | |
| 
 | |
|     // // sampling parameters
 | |
|     struct llama_sampling_params sparams;
 | |
| 
 | |
|     std::string model             = "models/7B/ggml-model-f16.gguf"; // model path
 | |
|     std::string model_draft       = "";                              // draft model for speculative decoding
 | |
|     std::string model_alias       = "unknown"; // model alias
 | |
|     std::string prompt            = "";
 | |
|     std::string prompt_file       = "";  // store the external prompt file name
 | |
|     std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
 | |
|     std::string input_prefix      = "";  // string to prefix user inputs with
 | |
|     std::string input_suffix      = "";  // string to suffix user inputs with
 | |
|     std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | |
|     std::string logdir            = "";  // directory in which to save YAML log files
 | |
| 
 | |
|     std::vector<llama_model_kv_override> kv_overrides;
 | |
| 
 | |
|     // TODO: avoid tuple, use struct
 | |
|     std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
 | |
|     std::string lora_base  = "";                              // base model path for the lora adapter
 | |
| 
 | |
|     int  ppl_stride        = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
 | |
|     int  ppl_output_type   = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
 | |
|                                     //                                       (which is more convenient to use for plotting)
 | |
|                                     //
 | |
|     bool   hellaswag       = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
 | |
|     size_t hellaswag_tasks = 400;   // number of tasks to use when computing the HellaSwag score
 | |
| 
 | |
|     bool   winogrande      = false; // compute Winogrande score over random tasks from datafile supplied in prompt
 | |
|     size_t winogrande_tasks= 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
 | |
| 
 | |
|     bool   multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
 | |
|     size_t multiple_choice_tasks = 0;     // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
 | |
| 
 | |
|     bool mul_mat_q         = true;  // if true, use mul_mat_q kernels instead of cuBLAS
 | |
|     bool random_prompt     = false; // do not randomize prompt if none provided
 | |
|     bool use_color         = false; // use color to distinguish generations and inputs
 | |
|     bool interactive       = false; // interactive mode
 | |
|     bool chatml            = false; // chatml mode (used for models trained on chatml syntax)
 | |
|     bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | |
|     bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | |
| 
 | |
|     bool embedding         = false; // get only sentence embedding
 | |
|     bool escape            = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
 | |
|     bool interactive_first = false; // wait for user input immediately
 | |
|     bool multiline_input   = false; // reverse the usage of `\`
 | |
|     bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
 | |
|     bool cont_batching     = false; // insert new sequences for decoding on-the-fly
 | |
| 
 | |
|     bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
 | |
|     bool ignore_eos        = false; // ignore generated EOS tokens
 | |
|     bool instruct          = false; // instruction mode (used for Alpaca models)
 | |
|     bool logits_all        = false; // return logits for all tokens in the batch
 | |
|     bool use_mmap          = true;  // use mmap for faster loads
 | |
|     bool use_mlock         = false; // use mlock to keep model in memory
 | |
|     bool numa              = false; // attempt optimizations that help on some NUMA systems
 | |
|     bool verbose_prompt    = false; // print prompt tokens before generation
 | |
|     bool display_prompt    = true;  // print prompt before generation
 | |
|     bool infill            = false; // use infill mode
 | |
|     bool dump_kv_cache     = false; // dump the KV cache contents for debugging purposes
 | |
|     bool no_kv_offload     = false; // disable KV offloading
 | |
| 
 | |
|     std::string cache_type_k = "f16"; // KV cache data type for the K
 | |
|     std::string cache_type_v = "f16"; // KV cache data type for the V
 | |
| 
 | |
|     // multimodal models (see examples/llava)
 | |
|     std::string mmproj = ""; // path to multimodal projector
 | |
|     std::string image  = ""; // path to an image file
 | |
| };
 | |
| 
 | |
| bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | |
| 
 | |
| std::string get_system_info(const gpt_params & params);
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng);
 | |
| 
 | |
| void process_escapes(std::string& input);
 | |
| 
 | |
| //
 | |
| // String parsing
 | |
| //
 | |
| 
 | |
| std::string parse_samplers_input(std::string input);
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| // TODO: avoid tuplue, use struct
 | |
| std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
 | |
| 
 | |
| struct llama_model_params   llama_model_params_from_gpt_params  (const gpt_params & params);
 | |
| struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
 | |
| 
 | |
| // Batch utils
 | |
| 
 | |
| void llama_batch_clear(struct llama_batch & batch);
 | |
| 
 | |
| void llama_batch_add(
 | |
|                  struct llama_batch & batch,
 | |
|                         llama_token   id,
 | |
|                           llama_pos   pos,
 | |
|     const std::vector<llama_seq_id> & seq_ids,
 | |
|                                bool   logits);
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| // tokenizes a string into a vector of tokens
 | |
| // should work similar to Python's `tokenizer.encode`
 | |
| std::vector<llama_token> llama_tokenize(
 | |
|   const struct llama_context * ctx,
 | |
|            const std::string & text,
 | |
|                         bool   add_bos,
 | |
|                         bool   special = false);
 | |
| 
 | |
| std::vector<llama_token> llama_tokenize(
 | |
|     const struct llama_model * model,
 | |
|            const std::string & text,
 | |
|                         bool   add_bos,
 | |
|                         bool   special = false);
 | |
| 
 | |
| // tokenizes a token into a piece
 | |
| // should work similar to Python's `tokenizer.id_to_piece`
 | |
| std::string llama_token_to_piece(
 | |
|         const struct llama_context * ctx,
 | |
|                        llama_token   token);
 | |
| 
 | |
| // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
 | |
| //       that takes into account the tokenizer type and decides how to handle the leading space
 | |
| //
 | |
| // detokenizes a vector of tokens into a string
 | |
| // should work similar to Python's `tokenizer.decode`
 | |
| // removes the leading space from the first non-BOS token
 | |
| std::string llama_detokenize_spm(
 | |
|                          llama_context * ctx,
 | |
|         const std::vector<llama_token> & tokens);
 | |
| 
 | |
| // detokenizes a vector of tokens into a string
 | |
| // should work similar to Python's `tokenizer.decode`
 | |
| std::string llama_detokenize_bpe(
 | |
|                          llama_context * ctx,
 | |
|         const std::vector<llama_token> & tokens);
 | |
| 
 | |
| // Uses the value from the model metadata if possible, otherwise
 | |
| // defaults to true when model type is SPM, otherwise false.
 | |
| bool llama_should_add_bos_token(const llama_model * model);
 | |
| 
 | |
| //
 | |
| // YAML utils
 | |
| //
 | |
| 
 | |
| bool create_directory_with_parents(const std::string & path);
 | |
| void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
 | |
| void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
 | |
| void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
 | |
| std::string get_sortable_timestamp();
 | |
| 
 | |
| void dump_non_result_info_yaml(
 | |
|     FILE * stream, const gpt_params & params, const llama_context * lctx,
 | |
|     const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
 | |
| 
 | |
| //
 | |
| // KV cache utils
 | |
| //
 | |
| 
 | |
| // Dump the KV cache view with the number of sequences per cell.
 | |
| void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
 | |
| 
 | |
| // Dump the KV cache view showing individual sequences in each cell (long output).
 | |
| void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
 |