mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	This is a follup of Commit fc0c8d286a
("llava : update surgery script to not remove tensors") but this time
the change is to the BakLLaVA specific part of the surgery script.
I've been able to test this using SkunkworksAI/BakLLaVA-1 and it works
as expected using the instructions in README.md.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
		
	
		
			
				
	
	
		
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import glob
 | 
						|
import os
 | 
						|
import torch
 | 
						|
 | 
						|
 | 
						|
ap = argparse.ArgumentParser()
 | 
						|
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
 | 
						|
args = ap.parse_args()
 | 
						|
 | 
						|
# find the model part that includes the the multimodal projector weights
 | 
						|
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
 | 
						|
checkpoint = torch.load(path)
 | 
						|
 | 
						|
# get a list of mm tensor names
 | 
						|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
 | 
						|
 | 
						|
# store these tensors in a new dictionary and torch.save them
 | 
						|
projector = {name: checkpoint[name].float() for name in mm_tensors}
 | 
						|
torch.save(projector, f"{args.model}/llava.projector")
 | 
						|
 | 
						|
# BakLLaVA models contain CLIP tensors in it
 | 
						|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
 | 
						|
if len(clip_tensors) > 0:
 | 
						|
    clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
 | 
						|
    torch.save(clip, f"{args.model}/llava.clip")
 | 
						|
 | 
						|
 | 
						|
    # added tokens should be removed to be able to convert Mistral models
 | 
						|
    if os.path.exists(f"{args.model}/added_tokens.json"):
 | 
						|
        with open(f"{args.model}/added_tokens.json", "w") as f:
 | 
						|
            f.write("{}\n")
 | 
						|
 | 
						|
 | 
						|
 | 
						|
print("Done!")
 | 
						|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
 | 
						|
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
 |