mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 29ae62d2ae
			
		
	
	29ae62d2ae
	
	
	
		
			
			* llama : fix embeddings ggml-ci * llama : do not use KV cache for non-causal models ggml-ci * embeddings : fix llama_batch_init arg * llama : add pooling switch * llama : distinguish token vs sequence embeddings ggml-ci * llama : assert pooling tensor * llama : simplify causal mask condition ggml-ci * llama : assert input batch with pooling enabled * readme : update API changes list
		
			
				
	
	
		
			35 lines
		
	
	
		
			940 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			35 lines
		
	
	
		
			940 B
		
	
	
	
		
			Python
		
	
	
	
	
	
| import asyncio
 | |
| import requests
 | |
| import numpy as np
 | |
| 
 | |
| n = 8
 | |
| 
 | |
| result = []
 | |
| 
 | |
| async def requests_post_async(*args, **kwargs):
 | |
|     return await asyncio.to_thread(requests.post, *args, **kwargs)
 | |
| 
 | |
| async def main():
 | |
|     model_url = "http://127.0.0.1:6900"
 | |
|     responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
 | |
|         url= f"{model_url}/embedding",
 | |
|         json= {"content": str(i)*1024}
 | |
|     ) for i in range(n)])
 | |
| 
 | |
|     for response in responses:
 | |
|         embedding = response.json()["embedding"]
 | |
|         print(embedding[-8:])
 | |
|         result.append(embedding)
 | |
| 
 | |
| asyncio.run(main())
 | |
| 
 | |
| # compute cosine similarity
 | |
| 
 | |
| for i in range(n-1):
 | |
|     for j in range(i+1, n):
 | |
|         embedding1 = np.array(result[i])
 | |
|         embedding2 = np.array(result[j])
 | |
|         similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
 | |
|         print(f"Similarity between {i} and {j}: {similarity:.2f}")
 | |
| 
 |