mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			248 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
 | |
| 
 | |
| import gguf
 | |
| import sys
 | |
| import struct
 | |
| import json
 | |
| import numpy as np
 | |
| from typing import Any, List
 | |
| from pathlib import Path
 | |
| from transformers import AutoModelForCausalLM
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| 
 | |
| NDArray = np.ndarray[Any, Any]
 | |
| 
 | |
| 
 | |
| def permute(weights: NDArray, n_head: int) -> NDArray:
 | |
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | |
|                    .swapaxes(1, 2)
 | |
|                    .reshape(weights.shape))
 | |
| 
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| fname_out = sys.argv[1] + "/ggml-model.bin"
 | |
| 
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
|         sys.exit(1)
 | |
|     fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | |
| 
 | |
| 
 | |
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
 | |
| list_vars = model.state_dict()
 | |
| 
 | |
| # count tensors to be converted
 | |
| tensor_count = 0
 | |
| for name in list_vars.keys():
 | |
|     # we don't need these
 | |
|     if name.endswith(".rotary_emb.inv_freq"):
 | |
|         continue
 | |
|     tensor_count += 1
 | |
| 
 | |
| gguf_writer = gguf.GGUFWriter.open(fname_out)
 | |
| 
 | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| # This mmust be changed when adding/deleting kv
 | |
| kv_count = 13
 | |
| 
 | |
| print("tensors " + str(tensor_count) + " kv " + str(kv_count))
 | |
| 
 | |
| print("write gguf header")
 | |
| 
 | |
| gguf_writer.write_header(tensor_count, kv_count)
 | |
| 
 | |
| print("write gguf hparams")
 | |
| 
 | |
| llm_arch = "llama"
 | |
| 
 | |
| gguf_writer.write_name("llama2-7b")
 | |
| gguf_writer.write_description("gguf test model")
 | |
| gguf_writer.write_architecture(llm_arch)
 | |
| gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
 | |
| gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
 | |
| gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
 | |
| gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | |
| gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | |
| gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
 | |
| gguf_writer.write_float32(llm_arch + ".attention.layer_norm_rms_epsilon", hparams["rms_norm_eps"])
 | |
| 
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("write gguf tokenizer")
 | |
| 
 | |
| tokens: List[str] = []
 | |
| scores: List[float] = []
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.model").is_file():
 | |
|     # vocab type sentencepiece
 | |
|     print("Adding sentencepiece tokenizer vocab.")
 | |
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
 | |
| 
 | |
|     # output vocab_size followed by all piece/score pairs
 | |
|     outbytes: bytes
 | |
|     outbytes = b""
 | |
|     outbytes += struct.pack("I", tokenizer.vocab_size())
 | |
| 
 | |
|     for i in range(tokenizer.vocab_size()):
 | |
|         text: bytes
 | |
|         if tokenizer.is_unknown(i):
 | |
|             text = " \u2047 ".encode("utf-8")
 | |
|         elif tokenizer.is_control(i):
 | |
|             text = b""
 | |
|         if tokenizer.is_byte(i):
 | |
|             piece = tokenizer.id_to_piece(i)
 | |
|             if len(piece) != 6:
 | |
|                 raise Exception(f"Invalid token: {piece}")
 | |
|             byte_value = int(piece[3:-1], 16)
 | |
|             text = struct.pack("B", byte_value)
 | |
|         else:
 | |
|             text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
 | |
|         score: float = tokenizer.get_score(i)
 | |
| 
 | |
|         tokens.append(text)
 | |
|         scores.append(score)
 | |
| 
 | |
| gguf_writer.write_tokenizer_model("llama")
 | |
| gguf_writer.write_token_list(tokens)
 | |
| gguf_writer.write_token_scores(scores)
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| # tensor info
 | |
| print("write gguf tensor info")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".rotary_emb.inv_freq"):
 | |
|         continue
 | |
| 
 | |
|     # permute these
 | |
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | |
|         data = permute(data, hparams["num_attention_heads"])
 | |
| 
 | |
|     # chnage tensor name
 | |
| 
 | |
|     if name == "model.embed_tokens.weight":
 | |
|         name = "tok_embeddings.weight"
 | |
|     elif name == "model.norm.weight":
 | |
|         name = "norm.weight"
 | |
|     elif name == "lm_head.weight":
 | |
|         name = "output.weight"
 | |
|     else:
 | |
|         for i in range(80):  # maximum number of layers
 | |
|             if name == "model.layers." + str(i) + ".input_layernorm.weight":
 | |
|                 name = "layers." + str(i) + ".attention_norm.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
 | |
|                 name = "layers." + str(i) + ".attention.wq.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
 | |
|                 name = "layers." + str(i) + ".attention.wk.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
 | |
|                 name = "layers." + str(i) + ".attention.wv.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
 | |
|                 name = "layers." + str(i) + ".attention.wo.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
 | |
|                 name = "layers." + str(i) + ".ffn_norm.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
 | |
|                 name = "layers." + str(i) + ".feed_forward.w1.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
 | |
|                 name = "layers." + str(i) + ".feed_forward.w2.weight"
 | |
|                 break
 | |
|             if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
 | |
|                 name = "layers." + str(i) + ".feed_forward.w3.weight"
 | |
|                 break
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
| 
 | |
|     # ftype == 0 -> float32, ftype == 1 -> float16
 | |
|     ftype_cur = 0
 | |
|     if ftype != 0:
 | |
|         if name.endswith(".weight") and n_dims == 2:
 | |
|             data = data.astype(np.float16)
 | |
|             ftype_cur = 1
 | |
|         else:
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
|     else:
 | |
|         if data.dtype != np.float32:
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|     gguf_writer.write_tensor_info(name, data)
 | |
| 
 | |
| 
 | |
| # tensor data
 | |
| print("write gguf tensor data")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
|     print("Process tensor: " + name + " with shape: ", data.shape)
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".rotary_emb.inv_freq"):
 | |
|         print("  Skip tensor: " + name)
 | |
|         continue
 | |
| 
 | |
|     # permute these
 | |
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | |
|         print("  Permute tensor: " + name)
 | |
|         data = permute(data, hparams["num_attention_heads"])
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
| 
 | |
|     # ftype == 0 -> float32, ftype == 1 -> float16
 | |
|     ftype_cur = 0
 | |
|     if ftype != 0:
 | |
|         if name.endswith(".weight") and n_dims == 2:
 | |
|             print("  Converting to float16")
 | |
|             data = data.astype(np.float16)
 | |
|             ftype_cur = 1
 | |
|         else:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
|     else:
 | |
|         if data.dtype != np.float32:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|     gguf_writer.write_tensor(data)
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| 
 | |
| print("Done. Output file: " + fname_out)
 | |
| print("")
 | 
