mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1246 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1246 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <chrono>
 | |
| #include <cinttypes>
 | |
| #include <clocale>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <regex>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| #include "ggml-cuda.h"
 | |
| #include "ggml-sycl.h"
 | |
| 
 | |
| // utils
 | |
| static uint64_t get_time_ns() {
 | |
|     using clock = std::chrono::high_resolution_clock;
 | |
|     return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| static std::string join(const std::vector<T> & values, const std::string & delim) {
 | |
|     std::ostringstream str;
 | |
|     for (size_t i = 0; i < values.size(); i++) {
 | |
|         str << values[i];
 | |
|         if (i < values.size() - 1) {
 | |
|             str << delim;
 | |
|         }
 | |
|     }
 | |
|     return str.str();
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| static std::vector<T> split(const std::string & str, char delim) {
 | |
|     std::vector<T> values;
 | |
|     std::istringstream str_stream(str);
 | |
|     std::string token;
 | |
|     while (std::getline(str_stream, token, delim)) {
 | |
|         T value;
 | |
|         std::istringstream token_stream(token);
 | |
|         token_stream >> value;
 | |
|         values.push_back(value);
 | |
|     }
 | |
|     return values;
 | |
| }
 | |
| 
 | |
| template<typename T, typename F>
 | |
| static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
 | |
|     std::vector<std::string> str_values;
 | |
|     std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
 | |
|     return str_values;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T avg(const std::vector<T> & v) {
 | |
|     if (v.empty()) {
 | |
|         return 0;
 | |
|     }
 | |
|     T sum = std::accumulate(v.begin(), v.end(), T(0));
 | |
|     return sum / (T)v.size();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T stdev(const std::vector<T> & v) {
 | |
|     if (v.size() <= 1) {
 | |
|         return 0;
 | |
|     }
 | |
|     T mean = avg(v);
 | |
|     T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
 | |
|     T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
 | |
|     return stdev;
 | |
| }
 | |
| 
 | |
| static std::string get_cpu_info() {
 | |
|     std::string id;
 | |
| #ifdef __linux__
 | |
|     FILE * f = fopen("/proc/cpuinfo", "r");
 | |
|     if (f) {
 | |
|         char buf[1024];
 | |
|         while (fgets(buf, sizeof(buf), f)) {
 | |
|             if (strncmp(buf, "model name", 10) == 0) {
 | |
|                 char * p = strchr(buf, ':');
 | |
|                 if (p) {
 | |
|                     p++;
 | |
|                     while (std::isspace(*p)) {
 | |
|                         p++;
 | |
|                     }
 | |
|                     while (std::isspace(p[strlen(p) - 1])) {
 | |
|                         p[strlen(p) - 1] = '\0';
 | |
|                     }
 | |
|                     id = p;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     // TODO: other platforms
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| static std::string get_gpu_info() {
 | |
|     std::string id;
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|     int count = ggml_cuda_get_device_count();
 | |
|     for (int i = 0; i < count; i++) {
 | |
|         char buf[128];
 | |
|         ggml_cuda_get_device_description(i, buf, sizeof(buf));
 | |
|         id += buf;
 | |
|         if (i < count - 1) {
 | |
|             id += "/";
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifdef GGML_USE_SYCL
 | |
|     int device_list[GGML_SYCL_MAX_DEVICES];
 | |
|     ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
 | |
| 
 | |
|     for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
 | |
|         if (device_list[i] >0 ){
 | |
|             char buf[128];
 | |
|             ggml_sycl_get_device_description(i, buf, sizeof(buf));
 | |
|             id += buf;
 | |
|             id += "/";
 | |
|         }
 | |
|     }
 | |
|     if (id.length() >2 ) {
 | |
|         id.pop_back();
 | |
|     }
 | |
| #endif
 | |
|     // TODO: other backends
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| // command line params
 | |
| enum output_formats {CSV, JSON, MARKDOWN, SQL};
 | |
| 
 | |
| static const char * output_format_str(output_formats format) {
 | |
|     switch (format) {
 | |
|         case CSV:      return "csv";
 | |
|         case JSON:     return "json";
 | |
|         case MARKDOWN: return "md";
 | |
|         case SQL:      return "sql";
 | |
|         default: GGML_ASSERT(!"invalid output format");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * split_mode_str(llama_split_mode mode) {
 | |
|     switch (mode) {
 | |
|         case LLAMA_SPLIT_MODE_NONE:  return "none";
 | |
|         case LLAMA_SPLIT_MODE_LAYER: return "layer";
 | |
|         case LLAMA_SPLIT_MODE_ROW:   return "row";
 | |
|         default: GGML_ASSERT(!"invalid split mode");
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct cmd_params {
 | |
|     std::vector<std::string> model;
 | |
|     std::vector<int> n_prompt;
 | |
|     std::vector<int> n_gen;
 | |
|     std::vector<int> n_batch;
 | |
|     std::vector<ggml_type> type_k;
 | |
|     std::vector<ggml_type> type_v;
 | |
|     std::vector<int> n_threads;
 | |
|     std::vector<int> n_gpu_layers;
 | |
|     std::vector<llama_split_mode> split_mode;
 | |
|     std::vector<int> main_gpu;
 | |
|     std::vector<bool> no_kv_offload;
 | |
|     std::vector<bool> mul_mat_q;
 | |
|     std::vector<std::vector<float>> tensor_split;
 | |
|     std::vector<bool> use_mmap;
 | |
|     int reps;
 | |
|     bool verbose;
 | |
|     output_formats output_format;
 | |
| };
 | |
| 
 | |
| static const cmd_params cmd_params_defaults = {
 | |
|     /* model         */ {"models/7B/ggml-model-q4_0.gguf"},
 | |
|     /* n_prompt      */ {512},
 | |
|     /* n_gen         */ {128},
 | |
|     /* n_batch       */ {512},
 | |
|     /* type_k        */ {GGML_TYPE_F16},
 | |
|     /* type_v        */ {GGML_TYPE_F16},
 | |
|     /* n_threads     */ {get_num_physical_cores()},
 | |
|     /* n_gpu_layers  */ {99},
 | |
|     /* split_mode    */ {LLAMA_SPLIT_MODE_LAYER},
 | |
|     /* main_gpu      */ {0},
 | |
|     /* no_kv_offload */ {false},
 | |
|     /* mul_mat_q     */ {true},
 | |
|     /* tensor_split  */ {std::vector<float>(llama_max_devices(), 0.0f)},
 | |
|     /* use_mmap      */ {true},
 | |
|     /* reps          */ 5,
 | |
|     /* verbose       */ false,
 | |
|     /* output_format */ MARKDOWN
 | |
| };
 | |
| 
 | |
| static void print_usage(int /* argc */, char ** argv) {
 | |
|     printf("usage: %s [options]\n", argv[0]);
 | |
|     printf("\n");
 | |
|     printf("options:\n");
 | |
|     printf("  -h, --help\n");
 | |
|     printf("  -m, --model <filename>              (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
 | |
|     printf("  -p, --n-prompt <n>                  (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
 | |
|     printf("  -n, --n-gen <n>                     (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
 | |
|     printf("  -b, --batch-size <n>                (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
 | |
|     printf("  -ctk <t>, --cache-type-k <t>        (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
 | |
|     printf("  -ctv <t>, --cache-type-v <t>        (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
 | |
|     printf("  -t, --threads <n>                   (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
 | |
|     printf("  -ngl, --n-gpu-layers <n>            (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
 | |
|     printf("  -sm, --split-mode <none|layer|row>  (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
 | |
|     printf("  -mg, --main-gpu <i>                 (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
 | |
|     printf("  -nkvo, --no-kv-offload <0|1>        (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
 | |
|     printf("  -mmp, --mmap <0|1>                  (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
 | |
|     printf("  -mmq, --mul-mat-q <0|1>             (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
 | |
|     printf("  -ts, --tensor_split <ts0/ts1/..>    (default: 0)\n");
 | |
|     printf("  -r, --repetitions <n>               (default: %d)\n", cmd_params_defaults.reps);
 | |
|     printf("  -o, --output <csv|json|md|sql>      (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
 | |
|     printf("  -v, --verbose                       (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
 | |
|     printf("\n");
 | |
|     printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
 | |
| }
 | |
| 
 | |
| static ggml_type ggml_type_from_name(const std::string & s) {
 | |
|     if (s == "f16") {
 | |
|         return GGML_TYPE_F16;
 | |
|     }
 | |
|     if (s == "q8_0") {
 | |
|         return GGML_TYPE_Q8_0;
 | |
|     }
 | |
|     if (s == "q4_0") {
 | |
|         return GGML_TYPE_Q4_0;
 | |
|     }
 | |
|     if (s == "q4_1") {
 | |
|         return GGML_TYPE_Q4_1;
 | |
|     }
 | |
|     if (s == "q5_0") {
 | |
|         return GGML_TYPE_Q5_0;
 | |
|     }
 | |
|     if (s == "q5_1") {
 | |
|         return GGML_TYPE_Q5_1;
 | |
|     }
 | |
| 
 | |
|     return GGML_TYPE_COUNT;
 | |
| }
 | |
| 
 | |
| 
 | |
| static cmd_params parse_cmd_params(int argc, char ** argv) {
 | |
|     cmd_params params;
 | |
|     std::string arg;
 | |
|     bool invalid_param = false;
 | |
|     const std::string arg_prefix = "--";
 | |
|     const char split_delim = ',';
 | |
| 
 | |
|     params.verbose = cmd_params_defaults.verbose;
 | |
|     params.output_format = cmd_params_defaults.output_format;
 | |
|     params.reps = cmd_params_defaults.reps;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (arg == "-h" || arg == "--help") {
 | |
|             print_usage(argc, argv);
 | |
|             exit(0);
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<std::string>(argv[i], split_delim);
 | |
|             params.model.insert(params.model.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-p" || arg == "--n-prompt") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-n" || arg == "--n-gen") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-b" || arg == "--batch-size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-ctk" || arg == "--cache-type-k") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<std::string>(argv[i], split_delim);
 | |
|             std::vector<ggml_type> types;
 | |
|             for (const auto & t : p) {
 | |
|                 ggml_type gt = ggml_type_from_name(t);
 | |
|                 if (gt == GGML_TYPE_COUNT) {
 | |
|                     invalid_param = true;
 | |
|                     break;
 | |
|                 }
 | |
|                 types.push_back(gt);
 | |
|             }
 | |
|             params.type_k.insert(params.type_k.end(), types.begin(), types.end());
 | |
|         } else if (arg == "-ctv" || arg == "--cache-type-v") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<std::string>(argv[i], split_delim);
 | |
|             std::vector<ggml_type> types;
 | |
|             for (const auto & t : p) {
 | |
|                 ggml_type gt = ggml_type_from_name(t);
 | |
|                 if (gt == GGML_TYPE_COUNT) {
 | |
|                     invalid_param = true;
 | |
|                     break;
 | |
|                 }
 | |
|                 types.push_back(gt);
 | |
|             }
 | |
|             params.type_v.insert(params.type_v.end(), types.begin(), types.end());
 | |
|         } else if (arg == "-t" || arg == "--threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-sm" || arg == "--split-mode") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<std::string>(argv[i], split_delim);
 | |
|             std::vector<llama_split_mode> modes;
 | |
|             for (const auto & m : p) {
 | |
|                 llama_split_mode mode;
 | |
|                 if (m == "none") {
 | |
|                     mode = LLAMA_SPLIT_MODE_NONE;
 | |
|                 } else if (m == "layer") {
 | |
|                     mode = LLAMA_SPLIT_MODE_LAYER;
 | |
|                 } else if (m == "row") {
 | |
|                     mode = LLAMA_SPLIT_MODE_ROW;
 | |
|                 } else {
 | |
|                     invalid_param = true;
 | |
|                     break;
 | |
|                 }
 | |
|                 modes.push_back(mode);
 | |
|             }
 | |
|             params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
 | |
|         } else if (arg == "-mg" || arg == "--main-gpu") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.main_gpu = split<int>(argv[i], split_delim);
 | |
|         } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<bool>(argv[i], split_delim);
 | |
|             params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-mmq" || arg == "--mul-mat-q") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<bool>(argv[i], split_delim);
 | |
|             params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-mmp" || arg == "--mmap") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<bool>(argv[i], split_delim);
 | |
|             params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-ts" || arg == "--tensor-split") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             for (auto ts : split<std::string>(argv[i], split_delim)) {
 | |
|                 // split string by ; and /
 | |
|                 const std::regex regex{R"([;/]+)"};
 | |
|                 std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
 | |
|                 std::vector<std::string> split_arg{it, {}};
 | |
|                 GGML_ASSERT(split_arg.size() <= llama_max_devices());
 | |
| 
 | |
|                 std::vector<float> tensor_split(llama_max_devices());
 | |
|                 for (size_t i = 0; i < llama_max_devices(); ++i) {
 | |
|                     if (i < split_arg.size()) {
 | |
|                         tensor_split[i] = std::stof(split_arg[i]);
 | |
|                     } else {
 | |
|                         tensor_split[i] = 0.0f;
 | |
|                     }
 | |
|                 }
 | |
|                 params.tensor_split.push_back(tensor_split);
 | |
|             }
 | |
|         } else if (arg == "-r" || arg == "--repetitions") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.reps = std::stoi(argv[i]);
 | |
|         } else if (arg == "-o" || arg == "--output") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             if (argv[i] == std::string("csv")) {
 | |
|                 params.output_format = CSV;
 | |
|             } else if (argv[i] == std::string("json")) {
 | |
|                 params.output_format = JSON;
 | |
|             } else if (argv[i] == std::string("md")) {
 | |
|                 params.output_format = MARKDOWN;
 | |
|             } else if (argv[i] == std::string("sql")) {
 | |
|                 params.output_format = SQL;
 | |
|             } else {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (arg == "-v" || arg == "--verbose") {
 | |
|             params.verbose = true;
 | |
|         } else {
 | |
|             invalid_param = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         print_usage(argc, argv);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     // set defaults
 | |
|     if (params.model.empty())        { params.model = cmd_params_defaults.model; }
 | |
|     if (params.n_prompt.empty())     { params.n_prompt = cmd_params_defaults.n_prompt; }
 | |
|     if (params.n_gen.empty())        { params.n_gen = cmd_params_defaults.n_gen; }
 | |
|     if (params.n_batch.empty())      { params.n_batch = cmd_params_defaults.n_batch; }
 | |
|     if (params.type_k.empty())       { params.type_k = cmd_params_defaults.type_k; }
 | |
|     if (params.type_v.empty())       { params.type_v = cmd_params_defaults.type_v; }
 | |
|     if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
 | |
|     if (params.split_mode.empty())   { params.split_mode = cmd_params_defaults.split_mode; }
 | |
|     if (params.main_gpu.empty())     { params.main_gpu = cmd_params_defaults.main_gpu; }
 | |
|     if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
 | |
|     if (params.mul_mat_q.empty())    { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
 | |
|     if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
 | |
|     if (params.use_mmap.empty())     { params.use_mmap = cmd_params_defaults.use_mmap; }
 | |
|     if (params.n_threads.empty())    { params.n_threads = cmd_params_defaults.n_threads; }
 | |
| 
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| struct cmd_params_instance {
 | |
|     std::string model;
 | |
|     int n_prompt;
 | |
|     int n_gen;
 | |
|     int n_batch;
 | |
|     ggml_type type_k;
 | |
|     ggml_type type_v;
 | |
|     int n_threads;
 | |
|     int n_gpu_layers;
 | |
|     llama_split_mode split_mode;
 | |
|     int main_gpu;
 | |
|     bool no_kv_offload;
 | |
|     bool mul_mat_q;
 | |
|     std::vector<float> tensor_split;
 | |
|     bool use_mmap;
 | |
| 
 | |
|     llama_model_params to_llama_mparams() const {
 | |
|         llama_model_params mparams = llama_model_default_params();
 | |
| 
 | |
|         mparams.n_gpu_layers = n_gpu_layers;
 | |
|         mparams.split_mode = split_mode;
 | |
|         mparams.main_gpu = main_gpu;
 | |
|         mparams.tensor_split = tensor_split.data();
 | |
|         mparams.use_mmap = use_mmap;
 | |
| 
 | |
|         return mparams;
 | |
|     }
 | |
| 
 | |
|     bool equal_mparams(const cmd_params_instance & other) const {
 | |
|         return model == other.model &&
 | |
|                n_gpu_layers == other.n_gpu_layers &&
 | |
|                split_mode == other.split_mode &&
 | |
|                main_gpu == other.main_gpu &&
 | |
|                use_mmap == other.use_mmap &&
 | |
|                tensor_split == other.tensor_split;
 | |
|     }
 | |
| 
 | |
|     llama_context_params to_llama_cparams() const {
 | |
|         llama_context_params cparams = llama_context_default_params();
 | |
| 
 | |
|         cparams.n_ctx = n_prompt + n_gen;
 | |
|         cparams.n_batch = n_batch;
 | |
|         cparams.type_k = type_k;
 | |
|         cparams.type_v = type_v;
 | |
|         cparams.mul_mat_q = mul_mat_q;
 | |
|         cparams.offload_kqv = !no_kv_offload;
 | |
| 
 | |
|         return cparams;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
 | |
|     std::vector<cmd_params_instance> instances;
 | |
| 
 | |
|     // this ordering minimizes the number of times that each model needs to be reloaded
 | |
|     for (const auto & m : params.model)
 | |
|     for (const auto & nl : params.n_gpu_layers)
 | |
|     for (const auto & sm : params.split_mode)
 | |
|     for (const auto & mg : params.main_gpu)
 | |
|     for (const auto & ts : params.tensor_split)
 | |
|     for (const auto & mmp : params.use_mmap)
 | |
|     for (const auto & nb : params.n_batch)
 | |
|     for (const auto & tk : params.type_k)
 | |
|     for (const auto & tv : params.type_v)
 | |
|     for (const auto & mmq : params.mul_mat_q)
 | |
|     for (const auto & nkvo : params.no_kv_offload)
 | |
|     for (const auto & nt : params.n_threads) {
 | |
|         for (const auto & n_prompt : params.n_prompt) {
 | |
|             if (n_prompt == 0) {
 | |
|                 continue;
 | |
|             }
 | |
|             cmd_params_instance instance = {
 | |
|                 /* .model        = */ m,
 | |
|                 /* .n_prompt     = */ n_prompt,
 | |
|                 /* .n_gen        = */ 0,
 | |
|                 /* .n_batch      = */ nb,
 | |
|                 /* .type_k       = */ tk,
 | |
|                 /* .type_v       = */ tv,
 | |
|                 /* .n_threads    = */ nt,
 | |
|                 /* .n_gpu_layers = */ nl,
 | |
|                 /* .split_mode   = */ sm,
 | |
|                 /* .main_gpu     = */ mg,
 | |
|                 /* .no_kv_offload= */ nkvo,
 | |
|                 /* .mul_mat_q    = */ mmq,
 | |
|                 /* .tensor_split = */ ts,
 | |
|                 /* .use_mmap     = */ mmp,
 | |
|             };
 | |
|             instances.push_back(instance);
 | |
|         }
 | |
| 
 | |
|         for (const auto & n_gen : params.n_gen) {
 | |
|             if (n_gen == 0) {
 | |
|                 continue;
 | |
|             }
 | |
|             cmd_params_instance instance = {
 | |
|                 /* .model        = */ m,
 | |
|                 /* .n_prompt     = */ 0,
 | |
|                 /* .n_gen        = */ n_gen,
 | |
|                 /* .n_batch      = */ nb,
 | |
|                 /* .type_k       = */ tk,
 | |
|                 /* .type_v       = */ tv,
 | |
|                 /* .n_threads    = */ nt,
 | |
|                 /* .n_gpu_layers = */ nl,
 | |
|                 /* .split_mode   = */ sm,
 | |
|                 /* .main_gpu     = */ mg,
 | |
|                 /* .no_kv_offload= */ nkvo,
 | |
|                 /* .mul_mat_q    = */ mmq,
 | |
|                 /* .tensor_split = */ ts,
 | |
|                 /* .use_mmap     = */ mmp,
 | |
|             };
 | |
|             instances.push_back(instance);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return instances;
 | |
| }
 | |
| 
 | |
| struct test {
 | |
|     static const std::string build_commit;
 | |
|     static const int build_number;
 | |
|     static const bool cuda;
 | |
|     static const bool opencl;
 | |
|     static const bool vulkan;
 | |
|     static const bool kompute;
 | |
|     static const bool metal;
 | |
|     static const bool sycl;
 | |
|     static const bool gpu_blas;
 | |
|     static const bool blas;
 | |
|     static const std::string cpu_info;
 | |
|     static const std::string gpu_info;
 | |
|     std::string model_filename;
 | |
|     std::string model_type;
 | |
|     uint64_t model_size;
 | |
|     uint64_t model_n_params;
 | |
|     int n_batch;
 | |
|     int n_threads;
 | |
|     ggml_type type_k;
 | |
|     ggml_type type_v;
 | |
|     int n_gpu_layers;
 | |
|     llama_split_mode split_mode;
 | |
|     int main_gpu;
 | |
|     bool no_kv_offload;
 | |
|     bool mul_mat_q;
 | |
|     std::vector<float> tensor_split;
 | |
|     bool use_mmap;
 | |
|     int n_prompt;
 | |
|     int n_gen;
 | |
|     std::string test_time;
 | |
|     std::vector<uint64_t> samples_ns;
 | |
| 
 | |
|     test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
 | |
|         model_filename = inst.model;
 | |
|         char buf[128];
 | |
|         llama_model_desc(lmodel, buf, sizeof(buf));
 | |
|         model_type = buf;
 | |
|         model_size = llama_model_size(lmodel);
 | |
|         model_n_params = llama_model_n_params(lmodel);
 | |
|         n_batch = inst.n_batch;
 | |
|         n_threads = inst.n_threads;
 | |
|         type_k = inst.type_k;
 | |
|         type_v = inst.type_v;
 | |
|         n_gpu_layers = inst.n_gpu_layers;
 | |
|         split_mode = inst.split_mode;
 | |
|         main_gpu = inst.main_gpu;
 | |
|         no_kv_offload = inst.no_kv_offload;
 | |
|         mul_mat_q = inst.mul_mat_q;
 | |
|         tensor_split = inst.tensor_split;
 | |
|         use_mmap = inst.use_mmap;
 | |
|         n_prompt = inst.n_prompt;
 | |
|         n_gen = inst.n_gen;
 | |
|         // RFC 3339 date-time format
 | |
|         time_t t = time(NULL);
 | |
|         std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
 | |
|         test_time = buf;
 | |
| 
 | |
|         (void) ctx;
 | |
|     }
 | |
| 
 | |
|     uint64_t avg_ns() const {
 | |
|         return ::avg(samples_ns);
 | |
|     }
 | |
| 
 | |
|     uint64_t stdev_ns() const {
 | |
|         return ::stdev(samples_ns);
 | |
|     }
 | |
| 
 | |
|     std::vector<double> get_ts() const {
 | |
|         int n_tokens = n_prompt + n_gen;
 | |
|         std::vector<double> ts;
 | |
|         std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
 | |
|         return ts;
 | |
|     }
 | |
| 
 | |
|     double avg_ts() const {
 | |
|         return ::avg(get_ts());
 | |
|     }
 | |
| 
 | |
|     double stdev_ts() const {
 | |
|         return ::stdev(get_ts());
 | |
|     }
 | |
| 
 | |
|     static std::string get_backend() {
 | |
|         if (cuda) {
 | |
|             return GGML_CUDA_NAME;
 | |
|         }
 | |
|         if (opencl) {
 | |
|             return "OpenCL";
 | |
|         }
 | |
|         if (vulkan) {
 | |
|             return "Vulkan";
 | |
|         }
 | |
|         if (kompute) {
 | |
|             return "Kompute";
 | |
|         }
 | |
|         if (metal) {
 | |
|             return "Metal";
 | |
|         }
 | |
|         if (sycl) {
 | |
|             return GGML_SYCL_NAME;
 | |
|         }
 | |
|         if (gpu_blas) {
 | |
|             return "GPU BLAS";
 | |
|         }
 | |
|         if (blas) {
 | |
|             return "BLAS";
 | |
|         }
 | |
| 
 | |
|         return "CPU";
 | |
|     }
 | |
| 
 | |
|     static const std::vector<std::string> & get_fields() {
 | |
|         static const std::vector<std::string> fields = {
 | |
|             "build_commit", "build_number",
 | |
|             "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
 | |
|             "cpu_info", "gpu_info",
 | |
|             "model_filename", "model_type", "model_size", "model_n_params",
 | |
|             "n_batch", "n_threads", "type_k", "type_v",
 | |
|             "n_gpu_layers", "split_mode",
 | |
|             "main_gpu", "no_kv_offload",
 | |
|             "mul_mat_q", "tensor_split", "use_mmap",
 | |
|             "n_prompt", "n_gen", "test_time",
 | |
|             "avg_ns", "stddev_ns",
 | |
|             "avg_ts", "stddev_ts"
 | |
|         };
 | |
|         return fields;
 | |
|     }
 | |
| 
 | |
|     enum field_type {STRING, BOOL, INT, FLOAT};
 | |
| 
 | |
|     static field_type get_field_type(const std::string & field) {
 | |
|         if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
 | |
|             field == "model_size" || field == "model_n_params" ||
 | |
|             field == "n_gpu_layers" || field == "main_gpu" ||
 | |
|             field == "n_prompt" || field == "n_gen" ||
 | |
|             field == "avg_ns" || field == "stddev_ns") {
 | |
|             return INT;
 | |
|         }
 | |
|         if (field == "cuda" || field == "opencl"  || field == "vulkan" || field == "kompute" || field == "metal" ||
 | |
|             field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
 | |
|             field == "mul_mat_q" || field == "use_mmap") {
 | |
|             return BOOL;
 | |
|         }
 | |
|         if (field == "avg_ts" || field == "stddev_ts") {
 | |
|             return FLOAT;
 | |
|         }
 | |
|         return STRING;
 | |
|     }
 | |
| 
 | |
|     std::vector<std::string> get_values() const {
 | |
|         std::string tensor_split_str;
 | |
|         int max_nonzero = 0;
 | |
|         for (size_t i = 0; i < llama_max_devices(); i++) {
 | |
|             if (tensor_split[i] > 0) {
 | |
|                 max_nonzero = i;
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i <= max_nonzero; i++) {
 | |
|             char buf[32];
 | |
|             snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
 | |
|             tensor_split_str += buf;
 | |
|             if (i < max_nonzero) {
 | |
|                 tensor_split_str += "/";
 | |
|             }
 | |
|         }
 | |
|         std::vector<std::string> values = {
 | |
|             build_commit, std::to_string(build_number),
 | |
|             std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
 | |
|             std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
 | |
|             cpu_info, gpu_info,
 | |
|             model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
 | |
|             std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
 | |
|             std::to_string(n_gpu_layers), split_mode_str(split_mode),
 | |
|             std::to_string(main_gpu), std::to_string(no_kv_offload),
 | |
|             std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
 | |
|             std::to_string(n_prompt), std::to_string(n_gen), test_time,
 | |
|             std::to_string(avg_ns()), std::to_string(stdev_ns()),
 | |
|             std::to_string(avg_ts()), std::to_string(stdev_ts())
 | |
|         };
 | |
|         return values;
 | |
|     }
 | |
| 
 | |
|     std::map<std::string, std::string> get_map() const {
 | |
|         std::map<std::string, std::string> map;
 | |
|         auto fields = get_fields();
 | |
|         auto values = get_values();
 | |
|         std::transform(fields.begin(), fields.end(), values.begin(),
 | |
|                 std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
 | |
|         return map;
 | |
|     }
 | |
| };
 | |
| 
 | |
| const std::string test::build_commit = LLAMA_COMMIT;
 | |
| const int         test::build_number = LLAMA_BUILD_NUMBER;
 | |
| const bool        test::cuda         = !!ggml_cpu_has_cublas();
 | |
| const bool        test::opencl       = !!ggml_cpu_has_clblast();
 | |
| const bool        test::vulkan       = !!ggml_cpu_has_vulkan();
 | |
| const bool        test::kompute      = !!ggml_cpu_has_kompute();
 | |
| const bool        test::metal        = !!ggml_cpu_has_metal();
 | |
| const bool        test::gpu_blas     = !!ggml_cpu_has_gpublas();
 | |
| const bool        test::blas         = !!ggml_cpu_has_blas();
 | |
| const bool        test::sycl         = !!ggml_cpu_has_sycl();
 | |
| const std::string test::cpu_info     = get_cpu_info();
 | |
| const std::string test::gpu_info     = get_gpu_info();
 | |
| 
 | |
| struct printer {
 | |
|     virtual ~printer() {}
 | |
| 
 | |
|     FILE * fout;
 | |
|     virtual void print_header(const cmd_params & params) { (void) params; }
 | |
|     virtual void print_test(const test & t) = 0;
 | |
|     virtual void print_footer() { }
 | |
| };
 | |
| 
 | |
| struct csv_printer : public printer {
 | |
|     static std::string escape_csv(const std::string & field) {
 | |
|         std::string escaped = "\"";
 | |
|         for (auto c : field) {
 | |
|             if (c == '"') {
 | |
|                 escaped += "\"";
 | |
|             }
 | |
|             escaped += c;
 | |
|         }
 | |
|         escaped += "\"";
 | |
|         return escaped;
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override  {
 | |
|         std::vector<std::string> fields = test::get_fields();
 | |
|         fprintf(fout, "%s\n", join(fields, ",").c_str());
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         std::vector<std::string> values = t.get_values();
 | |
|         std::transform(values.begin(), values.end(), values.begin(), escape_csv);
 | |
|         fprintf(fout, "%s\n", join(values, ",").c_str());
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct json_printer : public printer {
 | |
|     bool first = true;
 | |
| 
 | |
|     static std::string escape_json(const std::string & value) {
 | |
|         std::string escaped;
 | |
|         for (auto c : value) {
 | |
|             if (c == '"') {
 | |
|                 escaped += "\\\"";
 | |
|             } else if (c == '\\') {
 | |
|                 escaped += "\\\\";
 | |
|             } else  if (c <= 0x1f) {
 | |
|                 char buf[8];
 | |
|                 snprintf(buf, sizeof(buf), "\\u%04x", c);
 | |
|                 escaped += buf;
 | |
|             } else {
 | |
|                 escaped += c;
 | |
|             }
 | |
|         }
 | |
|         return escaped;
 | |
|     }
 | |
| 
 | |
|     static std::string format_value(const std::string & field, const std::string & value) {
 | |
|         switch (test::get_field_type(field)) {
 | |
|             case test::STRING:
 | |
|                 return "\"" + escape_json(value) + "\"";
 | |
|             case test::BOOL:
 | |
|                 return value == "0" ? "false" : "true";
 | |
|             default:
 | |
|                 return value;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         fprintf(fout, "[\n");
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
 | |
|         assert(fields.size() == values.size());
 | |
|         for (size_t i = 0; i < fields.size(); i++) {
 | |
|             fprintf(fout, "    \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         if (first) {
 | |
|             first = false;
 | |
|         } else {
 | |
|             fprintf(fout, ",\n");
 | |
|         }
 | |
|         fprintf(fout, "  {\n");
 | |
|         print_fields(test::get_fields(), t.get_values());
 | |
|         fprintf(fout, "    \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
 | |
|         fprintf(fout, "    \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
 | |
|         fprintf(fout, "  }");
 | |
|         fflush(fout);
 | |
|     }
 | |
| 
 | |
|     void print_footer() override {
 | |
|         fprintf(fout, "\n]\n");
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct markdown_printer : public printer {
 | |
|     std::vector<std::string> fields;
 | |
| 
 | |
|     static int get_field_width(const std::string & field) {
 | |
|         if (field == "model") {
 | |
|             return -30;
 | |
|         }
 | |
|         if (field == "t/s") {
 | |
|             return 16;
 | |
|         }
 | |
|         if (field == "size" || field == "params") {
 | |
|             return 10;
 | |
|         }
 | |
|         if (field == "n_gpu_layers") {
 | |
|             return 3;
 | |
|         }
 | |
| 
 | |
|         int width = std::max((int)field.length(), 10);
 | |
| 
 | |
|         if (test::get_field_type(field) == test::STRING) {
 | |
|             return -width;
 | |
|         }
 | |
|         return width;
 | |
|     }
 | |
| 
 | |
|     static std::string get_field_display_name(const std::string & field) {
 | |
|         if (field == "n_gpu_layers") {
 | |
|             return "ngl";
 | |
|         }
 | |
|         if (field == "split_mode") {
 | |
|             return "sm";
 | |
|         }
 | |
|         if (field == "n_threads") {
 | |
|             return "threads";
 | |
|         }
 | |
|         if (field == "mul_mat_q") {
 | |
|             return "mmq";
 | |
|         }
 | |
|         if (field == "no_kv_offload") {
 | |
|             return "nkvo";
 | |
|         }
 | |
|         if (field == "use_mmap") {
 | |
|             return "mmap";
 | |
|         }
 | |
|         if (field == "tensor_split") {
 | |
|             return "ts";
 | |
|         }
 | |
|         return field;
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         // select fields to print
 | |
|         fields.emplace_back("model");
 | |
|         fields.emplace_back("size");
 | |
|         fields.emplace_back("params");
 | |
|         fields.emplace_back("backend");
 | |
|         bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
 | |
|         if (!is_cpu_backend) {
 | |
|             fields.emplace_back("n_gpu_layers");
 | |
|         }
 | |
|         if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
 | |
|             fields.emplace_back("n_threads");
 | |
|         }
 | |
|         if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
 | |
|             fields.emplace_back("n_batch");
 | |
|         }
 | |
|         if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
 | |
|             fields.emplace_back("type_k");
 | |
|         }
 | |
|         if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
 | |
|             fields.emplace_back("type_v");
 | |
|         }
 | |
|         if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
 | |
|             fields.emplace_back("main_gpu");
 | |
|         }
 | |
|         if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
 | |
|             fields.emplace_back("split_mode");
 | |
|         }
 | |
|         if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
 | |
|             fields.emplace_back("mul_mat_q");
 | |
|         }
 | |
|         if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
 | |
|             fields.emplace_back("no_kv_offload");
 | |
|         }
 | |
|         if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
 | |
|             fields.emplace_back("tensor_split");
 | |
|         }
 | |
|         if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
 | |
|             fields.emplace_back("use_mmap");
 | |
|         }
 | |
|         fields.emplace_back("test");
 | |
|         fields.emplace_back("t/s");
 | |
| 
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             int width = get_field_width(field);
 | |
|             fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         std::map<std::string, std::string> vmap = t.get_map();
 | |
| 
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             std::string value;
 | |
|             char buf[128];
 | |
|             if (field == "model") {
 | |
|                 value = t.model_type;
 | |
|             } else if (field == "size") {
 | |
|                 if (t.model_size < 1024*1024*1024) {
 | |
|                     snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
 | |
|                 } else {
 | |
|                     snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
 | |
|                 }
 | |
|                 value = buf;
 | |
|             } else if (field == "params") {
 | |
|                 if (t.model_n_params < 1000*1000*1000) {
 | |
|                     snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
 | |
|                 } else {
 | |
|                     snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
 | |
|                 }
 | |
|                 value = buf;
 | |
|             } else if (field == "backend") {
 | |
|                 value = test::get_backend();
 | |
|             } else if (field == "test") {
 | |
|                 if (t.n_prompt > 0 && t.n_gen == 0) {
 | |
|                     snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
 | |
|                 } else if (t.n_gen > 0 && t.n_prompt == 0) {
 | |
|                     snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
 | |
|                 } else {
 | |
|                     assert(false);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 value = buf;
 | |
|             } else if (field == "t/s") {
 | |
|                 snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
 | |
|                 value = buf;
 | |
|             } else if (vmap.find(field) != vmap.end()) {
 | |
|                 value = vmap.at(field);
 | |
|             } else {
 | |
|                 assert(false);
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             int width = get_field_width(field);
 | |
|             if (field == "t/s") {
 | |
|                 // HACK: the utf-8 character is 2 bytes
 | |
|                 width += 1;
 | |
|             }
 | |
|             fprintf(fout, " %*s |", width, value.c_str());
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|     }
 | |
| 
 | |
|     void print_footer() override {
 | |
|         fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct sql_printer : public printer {
 | |
|     static std::string get_sql_field_type(const std::string & field) {
 | |
|         switch (test::get_field_type(field)) {
 | |
|             case test::STRING:
 | |
|                 return "TEXT";
 | |
|             case test::BOOL:
 | |
|             case test::INT:
 | |
|                 return "INTEGER";
 | |
|             case test::FLOAT:
 | |
|                 return "REAL";
 | |
|             default:
 | |
|                 assert(false);
 | |
|                 exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         std::vector<std::string> fields = test::get_fields();
 | |
|         fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
 | |
|         for (size_t i = 0; i < fields.size(); i++) {
 | |
|             fprintf(fout, "  %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),  i < fields.size() - 1 ? "," : "");
 | |
|         }
 | |
|         fprintf(fout, ");\n");
 | |
|         fprintf(fout, "\n");
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
 | |
|         fprintf(fout, "VALUES (");
 | |
|         std::vector<std::string> values = t.get_values();
 | |
|         for (size_t i = 0; i < values.size(); i++) {
 | |
|             fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
 | |
|         }
 | |
|         fprintf(fout, ");\n");
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
 | |
|     std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
 | |
|     int n_processed = 0;
 | |
| 
 | |
|     llama_set_n_threads(ctx, n_threads, n_threads);
 | |
| 
 | |
|     while (n_processed < n_prompt) {
 | |
|         int n_tokens = std::min(n_prompt - n_processed, n_batch);
 | |
|         llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
 | |
|         n_processed += n_tokens;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
 | |
|     llama_token token = llama_token_bos(llama_get_model(ctx));
 | |
| 
 | |
|     llama_set_n_threads(ctx, n_threads, n_threads);
 | |
| 
 | |
|     for (int i = 0; i < n_gen; i++) {
 | |
|         llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
 | |
|     (void) level;
 | |
|     (void) text;
 | |
|     (void) user_data;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     // try to set locale for unicode characters in markdown
 | |
|     setlocale(LC_CTYPE, ".UTF-8");
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
|     fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
| #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
 | |
|     fprintf(stderr, "warning: debug build, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
| #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
 | |
|     fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
|     cmd_params params = parse_cmd_params(argc, argv);
 | |
| 
 | |
|     // initialize llama.cpp
 | |
|     if (!params.verbose) {
 | |
|         llama_log_set(llama_null_log_callback, NULL);
 | |
|     }
 | |
|     llama_backend_init();
 | |
| 
 | |
|     // initialize printer
 | |
|     std::unique_ptr<printer> p;
 | |
|     switch (params.output_format) {
 | |
|         case CSV:
 | |
|             p.reset(new csv_printer());
 | |
|             break;
 | |
|         case JSON:
 | |
|             p.reset(new json_printer());
 | |
|             break;
 | |
|         case MARKDOWN:
 | |
|             p.reset(new markdown_printer());
 | |
|             break;
 | |
|         case SQL:
 | |
|             p.reset(new sql_printer());
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|             exit(1);
 | |
|     }
 | |
|     p->fout = stdout;
 | |
|     p->print_header(params);
 | |
| 
 | |
|     std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
 | |
| 
 | |
|     llama_model * lmodel = nullptr;
 | |
|     const cmd_params_instance * prev_inst = nullptr;
 | |
| 
 | |
|     for (const auto & inst : params_instances) {
 | |
|         // keep the same model between tests when possible
 | |
|         if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
 | |
|             if (lmodel) {
 | |
|                 llama_free_model(lmodel);
 | |
|             }
 | |
| 
 | |
|             lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
 | |
|             if (lmodel == NULL) {
 | |
|                 fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|             prev_inst = &inst;
 | |
|         }
 | |
| 
 | |
|         llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
 | |
|         if (ctx == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
 | |
|             llama_free_model(lmodel);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         test t(inst, lmodel, ctx);
 | |
| 
 | |
|         llama_kv_cache_clear(ctx);
 | |
| 
 | |
|         // warmup run
 | |
|         if (t.n_prompt > 0) {
 | |
|             test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
 | |
|         }
 | |
|         if (t.n_gen > 0) {
 | |
|             test_gen(ctx, 1, 0, t.n_threads);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < params.reps; i++) {
 | |
|             llama_kv_cache_clear(ctx);
 | |
| 
 | |
|             uint64_t t_start = get_time_ns();
 | |
|             if (t.n_prompt > 0) {
 | |
|                 test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
 | |
|             }
 | |
|             if (t.n_gen > 0) {
 | |
|                 test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
 | |
|             }
 | |
|             uint64_t t_ns = get_time_ns() - t_start;
 | |
|             t.samples_ns.push_back(t_ns);
 | |
|         }
 | |
| 
 | |
|         p->print_test(t);
 | |
| 
 | |
|         llama_print_timings(ctx);
 | |
| 
 | |
|         llama_free(ctx);
 | |
|     }
 | |
| 
 | |
|     llama_free_model(lmodel);
 | |
| 
 | |
|     p->print_footer();
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
