mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 6381d4e110
			
		
	
	6381d4e110
	
	
	
		
			
			* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf :  inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp :  fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
		
	
		
			
				
	
	
		
			970 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			970 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <chrono>
 | |
| #include <cinttypes>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <regex>
 | |
| #include <sstream>
 | |
| #include <stdio.h>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| #include "build-info.h"
 | |
| #ifdef GGML_USE_CUBLAS
 | |
| #include "ggml-cuda.h"
 | |
| #endif
 | |
| 
 | |
| // utils
 | |
| static uint64_t get_time_ns() {
 | |
|     using clock = std::chrono::high_resolution_clock;
 | |
|     return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| static std::string join(const std::vector<T> & values, const std::string & delim) {
 | |
|     std::ostringstream str;
 | |
|     for (size_t i = 0; i < values.size(); i++) {
 | |
|         str << values[i];
 | |
|         if (i < values.size() - 1) {
 | |
|             str << delim;
 | |
|         }
 | |
|     }
 | |
|     return str.str();
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| static std::vector<T> split(const std::string & str, char delim) {
 | |
|     std::vector<T> values;
 | |
|     std::istringstream str_stream(str);
 | |
|     std::string token;
 | |
|     while (std::getline(str_stream, token, delim)) {
 | |
|         T value;
 | |
|         std::istringstream token_stream(token);
 | |
|         token_stream >> value;
 | |
|         values.push_back(value);
 | |
|     }
 | |
|     return values;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T avg(const std::vector<T> & v) {
 | |
|     if (v.empty()) {
 | |
|         return 0;
 | |
|     }
 | |
|     T sum = std::accumulate(v.begin(), v.end(), T(0));
 | |
|     return sum / (T)v.size();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T stdev(const std::vector<T> & v) {
 | |
|     if (v.size() <= 1) {
 | |
|         return 0;
 | |
|     }
 | |
|     T mean = avg(v);
 | |
|     T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
 | |
|     T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
 | |
|     return stdev;
 | |
| }
 | |
| 
 | |
| static bool ggml_cpu_has_metal() {
 | |
| #if defined(GGML_USE_METAL)
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static std::string get_cpu_info() {
 | |
|     std::string id;
 | |
| #ifdef __linux__
 | |
|     FILE * f = fopen("/proc/cpuinfo", "r");
 | |
|     if (f) {
 | |
|         char buf[1024];
 | |
|         while (fgets(buf, sizeof(buf), f)) {
 | |
|             if (strncmp(buf, "model name", 10) == 0) {
 | |
|                 char * p = strchr(buf, ':');
 | |
|                 if (p) {
 | |
|                     p++;
 | |
|                     while (std::isspace(*p)) {
 | |
|                         p++;
 | |
|                     }
 | |
|                     while (std::isspace(p[strlen(p) - 1])) {
 | |
|                         p[strlen(p) - 1] = '\0';
 | |
|                     }
 | |
|                     id = p;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     // TODO: other platforms
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| static std::string get_gpu_info() {
 | |
|     std::string id;
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|     int count = ggml_cuda_get_device_count();
 | |
|     for (int i = 0; i < count; i++) {
 | |
|         char buf[128];
 | |
|         ggml_cuda_get_device_description(i, buf, sizeof(buf));
 | |
|         id += buf;
 | |
|         if (i < count - 1) {
 | |
|             id += "/";
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     // TODO: other backends
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| // command line params
 | |
| enum output_formats {CSV, JSON, MARKDOWN, SQL};
 | |
| 
 | |
| struct cmd_params {
 | |
|     std::vector<std::string> model;
 | |
|     std::vector<int> n_prompt;
 | |
|     std::vector<int> n_gen;
 | |
|     std::vector<int> n_batch;
 | |
|     std::vector<bool> f32_kv;
 | |
|     std::vector<int> n_threads;
 | |
|     std::vector<int> n_gpu_layers;
 | |
|     std::vector<int> main_gpu;
 | |
|     std::vector<bool> mul_mat_q;
 | |
|     std::vector<bool> low_vram;
 | |
|     std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
 | |
|     int reps;
 | |
|     bool verbose;
 | |
|     output_formats output_format;
 | |
| };
 | |
| 
 | |
| static const cmd_params cmd_params_defaults = {
 | |
|     /* model         */ {"models/7B/ggml-model-q4_0.bin"},
 | |
|     /* n_prompt      */ {512},
 | |
|     /* n_gen         */ {128},
 | |
|     /* n_batch       */ {512},
 | |
|     /* f32_kv        */ {false},
 | |
|     /* n_threads     */ {get_num_physical_cores()},
 | |
|     /* n_gpu_layers  */ {99},
 | |
|     /* main_gpu      */ {0},
 | |
|     /* mul_mat_q     */ {true},
 | |
|     /* low_vram      */ {false},
 | |
|     /* tensor_split  */ {{}},
 | |
|     /* reps          */ 5,
 | |
|     /* verbose       */ false,
 | |
|     /* output_format */ MARKDOWN
 | |
| };
 | |
| 
 | |
| static void print_usage(int /* argc */, char ** argv) {
 | |
|     fprintf(stdout, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stdout, "\n");
 | |
|     fprintf(stdout, "options:\n");
 | |
|     fprintf(stdout, "  -h, --help\n");
 | |
|     fprintf(stdout, "  -m, --model <filename>            (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
 | |
|     fprintf(stdout, "  -p, --n-prompt <n>                (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
 | |
|     fprintf(stdout, "  -n, --n-gen <n>                   (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
 | |
|     fprintf(stdout, "  -b, --batch-size <n>              (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
 | |
|     fprintf(stdout, "  --memory-f32 <0|1>                (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
 | |
|     fprintf(stdout, "  -t, --threads <n>                 (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
 | |
|     fprintf(stdout, "  -ngl N, --n-gpu-layers <n>        (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
 | |
|     fprintf(stdout, "  -mg i, --main-gpu <n>             (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
 | |
|     fprintf(stdout, "  -lv, --low-vram <0|1>             (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
 | |
|     fprintf(stdout, "  -mmq, --mul-mat-q <0|1>           (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
 | |
|     fprintf(stdout, "  -ts, --tensor_split <ts>                       \n");
 | |
|     fprintf(stdout, "  -r, --repetitions <n>             (default: %d)\n", cmd_params_defaults.reps);
 | |
|     fprintf(stdout, "  -o, --output <csv|json|md|sql>    (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : "md");
 | |
|     fprintf(stdout, "  -v, --verbose                     (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
 | |
|     fprintf(stdout, "\n");
 | |
|     fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by repeating the parameter.\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| static cmd_params parse_cmd_params(int argc, char ** argv) {
 | |
|     cmd_params params;
 | |
|     std::string arg;
 | |
|     bool invalid_param = false;
 | |
|     const std::string arg_prefix = "--";
 | |
|     const char split_delim = ',';
 | |
| 
 | |
|     params.verbose = cmd_params_defaults.verbose;
 | |
|     params.output_format = cmd_params_defaults.output_format;
 | |
|     params.reps = cmd_params_defaults.reps;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (arg == "-h" || arg == "--help") {
 | |
|             print_usage(argc, argv);
 | |
|             exit(0);
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<std::string>(argv[i], split_delim);
 | |
|             params.model.insert(params.model.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-p" || arg == "--n-prompt") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-n" || arg == "--n-gen") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-b" || arg == "--batch-size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
 | |
|         } else if (arg == "--memory-f32") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-t" || arg == "--threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<int>(argv[i], split_delim);
 | |
|             params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-mg" || arg == "--main-gpu") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.main_gpu = split<int>(argv[i], split_delim);
 | |
|         } else if (arg == "-lv" || arg == "--low-vram") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<bool>(argv[i], split_delim);
 | |
|             params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-mmq" || arg == "--mul-mat-q") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             auto p = split<bool>(argv[i], split_delim);
 | |
|             params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
 | |
|         } else if (arg == "-ts" || arg == "--tensor-split") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             for (auto ts : split<std::string>(argv[i], split_delim)) {
 | |
|                 // split string by ; and /
 | |
|                 const std::regex regex{R"([;/]+)"};
 | |
|                 std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
 | |
|                 std::vector<std::string> split_arg{it, {}};
 | |
|                 GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | |
| 
 | |
|                 std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | |
|                 for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
 | |
|                     if (i < split_arg.size()) {
 | |
|                         tensor_split[i] = std::stof(split_arg[i]);
 | |
|                     } else {
 | |
|                         tensor_split[i] = 0.0f;
 | |
|                     }
 | |
|                 }
 | |
|                 params.tensor_split.push_back(tensor_split);
 | |
|             }
 | |
|         } else if (arg == "-r" || arg == "--repetitions") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.reps = std::stoi(argv[i]);
 | |
|         } else if (arg == "-o" || arg == "--output") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             if (argv[i] == std::string("csv")) {
 | |
|                 params.output_format = CSV;
 | |
|             } else if (argv[i] == std::string("json")) {
 | |
|                 params.output_format = JSON;
 | |
|             } else if (argv[i] == std::string("md")) {
 | |
|                 params.output_format = MARKDOWN;
 | |
|             } else if (argv[i] == std::string("sql")) {
 | |
|                 params.output_format = SQL;
 | |
|             } else {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (arg == "-v" || arg == "--verbose") {
 | |
|             params.verbose = true;
 | |
|         } else {
 | |
|             invalid_param = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         print_usage(argc, argv);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     // set defaults
 | |
|     if (params.model.empty())        { params.model = cmd_params_defaults.model; }
 | |
|     if (params.n_prompt.empty())     { params.n_prompt = cmd_params_defaults.n_prompt; }
 | |
|     if (params.n_gen.empty())        { params.n_gen = cmd_params_defaults.n_gen; }
 | |
|     if (params.n_batch.empty())      { params.n_batch = cmd_params_defaults.n_batch; }
 | |
|     if (params.f32_kv.empty())       { params.f32_kv = cmd_params_defaults.f32_kv; }
 | |
|     if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
 | |
|     if (params.main_gpu.empty())     { params.main_gpu = cmd_params_defaults.main_gpu; }
 | |
|     if (params.mul_mat_q.empty())    { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
 | |
|     if (params.low_vram.empty())     { params.low_vram = cmd_params_defaults.low_vram; }
 | |
|     if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
 | |
|     if (params.n_threads.empty())    { params.n_threads = cmd_params_defaults.n_threads; }
 | |
| 
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| struct cmd_params_instance {
 | |
|     std::string model;
 | |
|     int n_prompt;
 | |
|     int n_gen;
 | |
|     int n_batch;
 | |
|     bool f32_kv;
 | |
|     int n_threads;
 | |
|     int n_gpu_layers;
 | |
|     int main_gpu;
 | |
|     bool mul_mat_q;
 | |
|     bool low_vram;
 | |
|     std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | |
| 
 | |
|     llama_context_params to_llama_params() const {
 | |
|         llama_context_params lparams = llama_context_default_params();
 | |
|         lparams.n_ctx = n_prompt + n_gen;
 | |
|         lparams.n_batch = n_batch;
 | |
|         lparams.f16_kv = !f32_kv;
 | |
|         lparams.n_gpu_layers = n_gpu_layers;
 | |
|         lparams.main_gpu = main_gpu;
 | |
|         lparams.mul_mat_q = mul_mat_q;
 | |
|         lparams.low_vram = low_vram;
 | |
|         lparams.tensor_split = tensor_split.data();
 | |
| 
 | |
|         return lparams;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
 | |
|     std::vector<cmd_params_instance> instances;
 | |
| 
 | |
|     for (const auto & m : params.model)
 | |
|     for (const auto & nb : params.n_batch)
 | |
|     for (const auto & fk : params.f32_kv)
 | |
|     for (const auto & nl : params.n_gpu_layers)
 | |
|     for (const auto & mg : params.main_gpu)
 | |
|     for (const auto & mmq : params.mul_mat_q)
 | |
|     for (const auto & lv : params.low_vram)
 | |
|     for (const auto & ts : params.tensor_split)
 | |
|     for (const auto & nt : params.n_threads) {
 | |
|         cmd_params_instance instance = {
 | |
|             /* .model        = */ m,
 | |
|             /* .n_prompt     = */ n_prompt,
 | |
|             /* .n_gen        = */ n_gen,
 | |
|             /* .n_batch      = */ nb,
 | |
|             /* .f32_kv       = */ fk,
 | |
|             /* .n_threads    = */ nt,
 | |
|             /* .n_gpu_layers = */ nl,
 | |
|             /* .main_gpu     = */ mg,
 | |
|             /* .mul_mat_q    = */ mmq,
 | |
|             /* .low_vram     = */ lv,
 | |
|             /* .tensor_split = */ ts,
 | |
|         };
 | |
|         instances.push_back(instance);
 | |
|     }
 | |
|     return instances;
 | |
| }
 | |
| 
 | |
| static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
 | |
|     std::vector<cmd_params_instance> instances;
 | |
| 
 | |
|     for (const auto & n_prompt : params.n_prompt) {
 | |
|         if (n_prompt == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
 | |
|         instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
 | |
|     }
 | |
| 
 | |
|     for (const auto & n_gen : params.n_gen) {
 | |
|         if (n_gen == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
 | |
|         instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
 | |
|     }
 | |
| 
 | |
|     return instances;
 | |
| }
 | |
| 
 | |
| struct test {
 | |
|     static const std::string build_commit;
 | |
|     static const int build_number;
 | |
|     static const bool cuda;
 | |
|     static const bool opencl;
 | |
|     static const bool metal;
 | |
|     static const bool gpu_blas;
 | |
|     static const bool blas;
 | |
|     static const std::string cpu_info;
 | |
|     static const std::string gpu_info;
 | |
|     std::string model_filename;
 | |
|     std::string model_type;
 | |
|     int n_batch;
 | |
|     int n_threads;
 | |
|     bool f32_kv;
 | |
|     int n_gpu_layers;
 | |
|     int main_gpu;
 | |
|     bool mul_mat_q;
 | |
|     bool low_vram;
 | |
|     std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | |
|     int n_prompt;
 | |
|     int n_gen;
 | |
|     std::string test_time;
 | |
|     std::vector<uint64_t> samples_ns;
 | |
| 
 | |
|     test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
 | |
|         model_filename = inst.model;
 | |
|         char buf[128];
 | |
|         llama_model_type(lmodel, buf, sizeof(buf));
 | |
|         model_type = buf;
 | |
|         n_batch = inst.n_batch;
 | |
|         n_threads = inst.n_threads;
 | |
|         f32_kv = inst.f32_kv;
 | |
|         n_gpu_layers = inst.n_gpu_layers;
 | |
|         main_gpu = inst.main_gpu;
 | |
|         mul_mat_q = inst.mul_mat_q;
 | |
|         low_vram = inst.low_vram;
 | |
|         tensor_split = inst.tensor_split;
 | |
|         n_prompt = inst.n_prompt;
 | |
|         n_gen = inst.n_gen;
 | |
|         // RFC 3339 date-time format
 | |
|         time_t t = time(NULL);
 | |
|         std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
 | |
|         test_time = buf;
 | |
| 
 | |
|         (void) ctx;
 | |
|     }
 | |
| 
 | |
|     uint64_t avg_ns() const {
 | |
|         return ::avg(samples_ns);
 | |
|     }
 | |
| 
 | |
|     uint64_t stdev_ns() const {
 | |
|         return ::stdev(samples_ns);
 | |
|     }
 | |
| 
 | |
|     std::vector<double> get_ts() const {
 | |
|         int n_tokens = n_prompt + n_gen;
 | |
|         std::vector<double> ts;
 | |
|         std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
 | |
|         return ts;
 | |
|     }
 | |
| 
 | |
|     double avg_ts() const {
 | |
|         return ::avg(get_ts());
 | |
|     }
 | |
| 
 | |
|     double stdev_ts() const {
 | |
|         return ::stdev(get_ts());
 | |
|     }
 | |
| 
 | |
|     static std::string get_backend() {
 | |
|         if (cuda) {
 | |
|             return "CUDA";
 | |
|         }
 | |
|         if (opencl) {
 | |
|             return "OpenCL";
 | |
|         }
 | |
|         if (metal) {
 | |
|             return "Metal";
 | |
|         }
 | |
|         if (gpu_blas) {
 | |
|             return "GPU BLAS";
 | |
|         }
 | |
|         if (blas) {
 | |
|             return "BLAS";
 | |
|         }
 | |
|         return "CPU";
 | |
|     }
 | |
| 
 | |
|     static const std::vector<std::string> & get_fields() {
 | |
|         static const std::vector<std::string> fields = {
 | |
|             "build_commit", "build_number",
 | |
|             "cuda", "opencl", "metal", "gpu_blas", "blas",
 | |
|             "cpu_info", "gpu_info",
 | |
|             "model_filename", "model_type",
 | |
|             "n_batch", "n_threads", "f16_kv",
 | |
|             "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
 | |
|             "n_prompt", "n_gen", "test_time",
 | |
|             "avg_ns", "stddev_ns",
 | |
|             "avg_ts", "stddev_ts"
 | |
|         };
 | |
|         return fields;
 | |
|     }
 | |
| 
 | |
|     enum field_type {STRING, BOOL, INT, FLOAT};
 | |
| 
 | |
|     static field_type get_field_type(const std::string & field) {
 | |
|         if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
 | |
|             field == "n_gpu_layers" || field == "main_gpu" ||
 | |
|             field == "n_prompt" || field == "n_gen" ||
 | |
|             field == "avg_ns" || field == "stddev_ns") {
 | |
|             return INT;
 | |
|         }
 | |
|         if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
 | |
|             field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
 | |
|             return BOOL;
 | |
|         }
 | |
|         if (field == "avg_ts" || field == "stddev_ts") {
 | |
|             return FLOAT;
 | |
|         }
 | |
|         return STRING;
 | |
|     }
 | |
| 
 | |
|     std::vector<std::string> get_values() const {
 | |
|         std::string tensor_split_str;
 | |
|         int max_nonzero = 0;
 | |
|         for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
 | |
|             if (tensor_split[i] > 0) {
 | |
|                 max_nonzero = i;
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i <= max_nonzero; i++) {
 | |
|             char buf[32];
 | |
|             snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
 | |
|             tensor_split_str += buf;
 | |
|             if (i < max_nonzero) {
 | |
|                 tensor_split_str += "/";
 | |
|             }
 | |
|         }
 | |
|         std::vector<std::string> values = {
 | |
|             build_commit, std::to_string(build_number),
 | |
|             std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
 | |
|             cpu_info, gpu_info,
 | |
|             model_filename, model_type,
 | |
|             std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
 | |
|             std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
 | |
|             std::to_string(n_prompt), std::to_string(n_gen), test_time,
 | |
|             std::to_string(avg_ns()), std::to_string(stdev_ns()),
 | |
|             std::to_string(avg_ts()), std::to_string(stdev_ts())
 | |
|         };
 | |
|         return values;
 | |
|     }
 | |
| 
 | |
|     std::map<std::string, std::string> get_map() const {
 | |
|         std::map<std::string, std::string> map;
 | |
|         auto fields = get_fields();
 | |
|         auto values = get_values();
 | |
|         std::transform(fields.begin(), fields.end(), values.begin(),
 | |
|                 std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
 | |
|         return map;
 | |
|     }
 | |
| };
 | |
| 
 | |
| const std::string test::build_commit = BUILD_COMMIT;
 | |
| const int         test::build_number = BUILD_NUMBER;
 | |
| const bool        test::cuda         = !!ggml_cpu_has_cublas();
 | |
| const bool        test::opencl       = !!ggml_cpu_has_clblast();
 | |
| const bool        test::metal        = !!ggml_cpu_has_metal();
 | |
| const bool        test::gpu_blas     = !!ggml_cpu_has_gpublas();
 | |
| const bool        test::blas         = !!ggml_cpu_has_blas();
 | |
| const std::string test::cpu_info     = get_cpu_info();
 | |
| const std::string test::gpu_info     = get_gpu_info();
 | |
| 
 | |
| struct printer {
 | |
|     virtual ~printer() {}
 | |
| 
 | |
|     FILE * fout;
 | |
|     virtual void print_header(const cmd_params & params) { (void) params; };
 | |
|     virtual void print_test(const test & t) = 0;
 | |
|     virtual void print_footer() { };
 | |
| };
 | |
| 
 | |
| struct csv_printer : public printer {
 | |
|     static std::string escape_csv(const std::string & field) {
 | |
|         std::string escaped = "\"";
 | |
|         for (auto c : field) {
 | |
|             if (c == '"') {
 | |
|                 escaped += "\"";
 | |
|             }
 | |
|             escaped += c;
 | |
|         }
 | |
|         escaped += "\"";
 | |
|         return escaped;
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override  {
 | |
|         std::vector<std::string> fields = test::get_fields();
 | |
|         fprintf(fout, "%s\n", join(fields, ",").c_str());
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         std::vector<std::string> values = t.get_values();
 | |
|         std::transform(values.begin(), values.end(), values.begin(), escape_csv);
 | |
|         fprintf(fout, "%s\n", join(values, ",").c_str());
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct json_printer : public printer {
 | |
|     bool first = true;
 | |
| 
 | |
|     static std::string escape_json(const std::string & value) {
 | |
|         std::string escaped;
 | |
|         for (auto c : value) {
 | |
|             if (c == '"') {
 | |
|                 escaped += "\\\"";
 | |
|             } else if (c == '\\') {
 | |
|                 escaped += "\\\\";
 | |
|             } else  if (c <= 0x1f) {
 | |
|                 char buf[8];
 | |
|                 snprintf(buf, sizeof(buf), "\\u%04x", c);
 | |
|                 escaped += buf;
 | |
|             } else {
 | |
|                 escaped += c;
 | |
|             }
 | |
|         }
 | |
|         return escaped;
 | |
|     }
 | |
| 
 | |
|     static std::string format_value(const std::string & field, const std::string & value) {
 | |
|         switch (test::get_field_type(field)) {
 | |
|             case test::STRING:
 | |
|                 return "\"" + escape_json(value) + "\"";
 | |
|             case test::BOOL:
 | |
|                 return value == "0" ? "false" : "true";
 | |
|             default:
 | |
|                 return value;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         fprintf(fout, "[\n");
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
 | |
|         assert(fields.size() == values.size());
 | |
|         for (size_t i = 0; i < fields.size(); i++) {
 | |
|             fprintf(fout, "    \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         if (first) {
 | |
|             first = false;
 | |
|         } else {
 | |
|             fprintf(fout, ",\n");
 | |
|         }
 | |
|         fprintf(fout, "  {\n");
 | |
|         print_fields(test::get_fields(), t.get_values());
 | |
|         fprintf(fout, "    \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
 | |
|         fprintf(fout, "    \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
 | |
|         fprintf(fout, "  }");
 | |
|         fflush(fout);
 | |
|     }
 | |
| 
 | |
|     void print_footer() override {
 | |
|         fprintf(fout, "\n]\n");
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct markdown_printer : public printer {
 | |
|     std::vector<std::string> fields;
 | |
| 
 | |
|     static int get_field_width(const std::string & field) {
 | |
|         if (field == "model") {
 | |
|             return -30;
 | |
|         }
 | |
|         if (field == "t/s") {
 | |
|             return 15;
 | |
|         }
 | |
|         int width = std::max((int)field.length(), 10);
 | |
| 
 | |
|         if (test::get_field_type(field) == test::STRING) {
 | |
|             return -width;
 | |
|         }
 | |
|         return width;
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         // select fields to print
 | |
|         fields = { "model", "backend" };
 | |
|         bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
 | |
|         if (!is_cpu_backend) {
 | |
|             fields.push_back("n_gpu_layers");
 | |
|         }
 | |
|         if (params.n_batch.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
 | |
|             fields.push_back("n_threads");
 | |
|         }
 | |
|         if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
 | |
|             fields.push_back("n_batch");
 | |
|         }
 | |
|         if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
 | |
|             fields.push_back("f16_kv");
 | |
|         }
 | |
|         if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
 | |
|             fields.push_back("main_gpu");
 | |
|         }
 | |
|         if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
 | |
|             fields.push_back("mul_mat_q");
 | |
|         }
 | |
|         if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
 | |
|             fields.push_back("low_vram");
 | |
|         }
 | |
|         if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
 | |
|             fields.push_back("tensor_split");
 | |
|         }
 | |
|         fields.push_back("test");
 | |
|         fields.push_back("t/s");
 | |
| 
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             fprintf(fout, " %*s |", get_field_width(field), field.c_str());
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             int width = get_field_width(field);
 | |
|             fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         std::map<std::string, std::string> vmap = t.get_map();
 | |
| 
 | |
|         fprintf(fout, "|");
 | |
|         for (const auto & field : fields) {
 | |
|             std::string value;
 | |
|             if (field == "model") {
 | |
|                 value = t.model_type;
 | |
|             } else if (field == "backend") {
 | |
|                 value = test::get_backend();
 | |
|             } else if (field == "test") {
 | |
|                 char buf[128];
 | |
|                 if (t.n_prompt > 0 && t.n_gen == 0) {
 | |
|                     snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
 | |
|                 } else if (t.n_gen > 0 && t.n_prompt == 0) {
 | |
|                     snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
 | |
|                 } else {
 | |
|                     assert(false);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 value = buf;
 | |
|             } else if (field == "t/s") {
 | |
|                 char buf[128];
 | |
|                 snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
 | |
|                 value = buf;
 | |
|             } else if (vmap.find(field) != vmap.end()) {
 | |
|                 value = vmap.at(field);
 | |
|             } else {
 | |
|                 assert(false);
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             int width = get_field_width(field);
 | |
|             if (field == "t/s") {
 | |
|                 // HACK: the utf-8 character is 2 bytes
 | |
|                 width += 1;
 | |
|             }
 | |
|             fprintf(fout, " %*s |", width, value.c_str());
 | |
|         }
 | |
|         fprintf(fout, "\n");
 | |
|     }
 | |
| 
 | |
|     void print_footer() override {
 | |
|         fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct sql_printer : public printer {
 | |
|     static std::string get_sql_field_type(const std::string & field) {
 | |
|         switch (test::get_field_type(field)) {
 | |
|             case test::STRING:
 | |
|                 return "TEXT";
 | |
|             case test::BOOL:
 | |
|             case test::INT:
 | |
|                 return "INTEGER";
 | |
|             case test::FLOAT:
 | |
|                 return "REAL";
 | |
|             default:
 | |
|                 assert(false);
 | |
|                 exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void print_header(const cmd_params & params) override {
 | |
|         std::vector<std::string> fields = test::get_fields();
 | |
|         fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
 | |
|         for (size_t i = 0; i < fields.size(); i++) {
 | |
|             fprintf(fout, "  %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),  i < fields.size() - 1 ? "," : "");
 | |
|         }
 | |
|         fprintf(fout, ");\n");
 | |
|         fprintf(fout, "\n");
 | |
|         (void) params;
 | |
|     }
 | |
| 
 | |
|     void print_test(const test & t) override {
 | |
|         fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
 | |
|         fprintf(fout, "VALUES (");
 | |
|         std::vector<std::string> values = t.get_values();
 | |
|         for (size_t i = 0; i < values.size(); i++) {
 | |
|             fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
 | |
|         }
 | |
|         fprintf(fout, ");\n");
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
 | |
|     std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
 | |
|     int n_processed = 0;
 | |
|     while (n_processed < n_prompt) {
 | |
|         int n_tokens = std::min(n_prompt - n_processed, n_batch);
 | |
|         llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
 | |
|         n_processed += n_tokens;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
 | |
|     llama_token token = llama_token_bos(ctx);
 | |
|     for (int i = 0; i < n_gen; i++) {
 | |
|         llama_eval(ctx, &token, 1, n_past + i, n_threads);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
 | |
|     (void) level;
 | |
|     (void) text;
 | |
|     (void) user_data;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
| #if !defined(NDEBUG)
 | |
|     fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
| #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
 | |
|     fprintf(stderr, "warning: debug build, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
| #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
 | |
|     fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
 | |
| #endif
 | |
| 
 | |
|     cmd_params params = parse_cmd_params(argc, argv);
 | |
| 
 | |
|     // initialize llama.cpp
 | |
|     if (!params.verbose) {
 | |
|         llama_log_set(llama_null_log_callback, NULL);
 | |
|     }
 | |
|     bool numa = false;
 | |
|     llama_backend_init(numa);
 | |
| 
 | |
|     // initialize printer
 | |
|     std::unique_ptr<printer> p;
 | |
|     switch (params.output_format) {
 | |
|         case CSV:
 | |
|             p.reset(new csv_printer());
 | |
|             break;
 | |
|         case JSON:
 | |
|             p.reset(new json_printer());
 | |
|             break;
 | |
|         case MARKDOWN:
 | |
|             p.reset(new markdown_printer());
 | |
|             break;
 | |
|         case SQL:
 | |
|             p.reset(new sql_printer());
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|             exit(1);
 | |
|     }
 | |
|     p->fout = stdout;
 | |
|     p->print_header(params);
 | |
| 
 | |
|     std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
 | |
| 
 | |
|     for (const auto & inst : params_instances) {
 | |
|         // TODO: keep the model between tests when possible
 | |
|         llama_context_params lparams = inst.to_llama_params();
 | |
| 
 | |
|         llama_model * lmodel  = llama_load_model_from_file(inst.model.c_str(), lparams);
 | |
|         if (lmodel == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
 | |
|         if (ctx == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
 | |
|             llama_free_model(lmodel);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         test t(inst, lmodel, ctx);
 | |
| 
 | |
|         // warmup run
 | |
|         test_gen(ctx, 1, 0, t.n_threads);
 | |
| 
 | |
|         for (int i = 0; i < params.reps; i++) {
 | |
|             uint64_t t_start = get_time_ns();
 | |
|             if (t.n_prompt > 0) {
 | |
|                 test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
 | |
|             }
 | |
|             if (t.n_gen > 0) {
 | |
|                 test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
 | |
|             }
 | |
|             uint64_t t_ns = get_time_ns() - t_start;
 | |
|             t.samples_ns.push_back(t_ns);
 | |
|         }
 | |
| 
 | |
|         p->print_test(t);
 | |
| 
 | |
|         llama_print_timings(ctx);
 | |
| 
 | |
|         llama_free(ctx);
 | |
|         llama_free_model(lmodel);
 | |
|     }
 | |
| 
 | |
|     p->print_footer();
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |