mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* (wip) refactor downloading system [no ci] * fix all examples * fix mmproj with -hf * gemma3: update readme * only handle mmproj in llava example * fix multi-shard download * windows: fix problem with std::min and std::max * fix 2
		
			
				
	
	
		
			262 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "arg.h"
 | 
						|
#include "common.h"
 | 
						|
#include "sampling.h"
 | 
						|
#include "speculative.h"
 | 
						|
#include "log.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    common_params params;
 | 
						|
 | 
						|
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.n_predict < -1) {
 | 
						|
        LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    common_init();
 | 
						|
 | 
						|
    if (params.speculative.model.path.empty()) {
 | 
						|
        LOG_ERR("%s: --model-draft is required\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // init llama.cpp
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    llama_model * model_tgt = NULL;
 | 
						|
    //llama_model * model_dft = NULL;
 | 
						|
 | 
						|
    llama_context * ctx_tgt = NULL;
 | 
						|
    llama_context * ctx_dft = NULL;
 | 
						|
 | 
						|
    // load the target model
 | 
						|
    common_init_result llama_init_tgt = common_init_from_params(params);
 | 
						|
 | 
						|
    model_tgt = llama_init_tgt.model.get();
 | 
						|
    ctx_tgt   = llama_init_tgt.context.get();
 | 
						|
 | 
						|
    const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
 | 
						|
 | 
						|
    // load the draft model
 | 
						|
    params.devices      = params.speculative.devices;
 | 
						|
    params.model        = params.speculative.model;
 | 
						|
    params.n_ctx        = params.speculative.n_ctx;
 | 
						|
    params.n_batch      = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
 | 
						|
    params.n_gpu_layers = params.speculative.n_gpu_layers;
 | 
						|
 | 
						|
    if (params.speculative.cpuparams.n_threads > 0) {
 | 
						|
        params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
 | 
						|
    }
 | 
						|
 | 
						|
    params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
 | 
						|
    common_init_result llama_init_dft = common_init_from_params(params);
 | 
						|
 | 
						|
    //model_dft = llama_init_dft.model.get();
 | 
						|
    ctx_dft   = llama_init_dft.context.get();
 | 
						|
 | 
						|
    if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Tokenize the prompt
 | 
						|
    std::vector<llama_token> inp;
 | 
						|
    inp = common_tokenize(ctx_tgt, params.prompt, true, true);
 | 
						|
 | 
						|
    if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) {
 | 
						|
        LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
 | 
						|
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) {
 | 
						|
        LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
 | 
						|
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    LOG("\n\n");
 | 
						|
 | 
						|
    for (auto id : inp) {
 | 
						|
        LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    // how many tokens to draft each time
 | 
						|
    int n_draft     = params.speculative.n_max;
 | 
						|
    int n_draft_min = params.speculative.n_min;
 | 
						|
 | 
						|
    float p_min = params.speculative.p_min;
 | 
						|
 | 
						|
    int n_predict = 0;
 | 
						|
    int n_drafted = 0;
 | 
						|
    int n_accept  = 0;
 | 
						|
 | 
						|
    // used to determine end of generation
 | 
						|
    bool has_eos = false;
 | 
						|
 | 
						|
    // ================================================
 | 
						|
    // everything until here is standard initialization
 | 
						|
    // the relevant stuff for speculative decoding starts here
 | 
						|
 | 
						|
    const auto t_enc_start = ggml_time_us();
 | 
						|
 | 
						|
    // target model sampling context
 | 
						|
    struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
 | 
						|
 | 
						|
    // eval the prompt
 | 
						|
    llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
 | 
						|
 | 
						|
    // note: keep the last token separate!
 | 
						|
    llama_token id_last = inp.back();
 | 
						|
 | 
						|
    // all tokens currently in the target context
 | 
						|
    llama_tokens prompt_tgt(inp.begin(), inp.end() - 1);
 | 
						|
    prompt_tgt.reserve(llama_n_ctx(ctx_tgt));
 | 
						|
 | 
						|
    int n_past = inp.size() - 1;
 | 
						|
 | 
						|
    // init the speculator
 | 
						|
    struct common_speculative_params params_spec;
 | 
						|
    params_spec.n_draft = n_draft;
 | 
						|
    params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
 | 
						|
    params_spec.p_min   = p_min;
 | 
						|
 | 
						|
    struct common_speculative * spec = common_speculative_init(ctx_dft);
 | 
						|
 | 
						|
    llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
 | 
						|
 | 
						|
    const auto t_enc_end = ggml_time_us();
 | 
						|
 | 
						|
    const auto t_dec_start = ggml_time_us();
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        // optionally, generate draft tokens that can be appended to the target batch
 | 
						|
        //
 | 
						|
        // this is the most important part of the speculation. the more probable tokens that are provided here
 | 
						|
        // the better the performance will be. in theory, this computation can be performed asynchronously and even
 | 
						|
        // offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
 | 
						|
        // from a cache or lookup tables.
 | 
						|
        //
 | 
						|
        llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
 | 
						|
 | 
						|
        //LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
 | 
						|
 | 
						|
        // always have a token to evaluate from before - id_last
 | 
						|
        common_batch_clear(batch_tgt);
 | 
						|
        common_batch_add  (batch_tgt, id_last, n_past++, { 0 }, true);
 | 
						|
 | 
						|
        // evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
 | 
						|
        {
 | 
						|
            // do not waste time on small drafts
 | 
						|
            if (draft.size() < (size_t) n_draft_min) {
 | 
						|
                draft.clear();
 | 
						|
            }
 | 
						|
 | 
						|
            for (size_t i = 0; i < draft.size(); ++i) {
 | 
						|
                common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
 | 
						|
            }
 | 
						|
 | 
						|
            //LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
 | 
						|
 | 
						|
            llama_decode(ctx_tgt, batch_tgt);
 | 
						|
        }
 | 
						|
 | 
						|
        // sample from the full target batch and return the accepted tokens based on the target sampler
 | 
						|
        //
 | 
						|
        // for each token to be accepted, the sampler would have to sample that same token
 | 
						|
        // in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
 | 
						|
        // available logits from the batch and sample the next token until we run out of logits or the sampler
 | 
						|
        // disagrees with the draft
 | 
						|
        //
 | 
						|
        const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
 | 
						|
 | 
						|
        //LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
 | 
						|
 | 
						|
        GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
 | 
						|
 | 
						|
        n_past    += ids.size() - 1;
 | 
						|
        n_drafted += draft.size(); // note: we ignore the discarded small drafts
 | 
						|
        n_accept  += ids.size() - 1;
 | 
						|
        n_predict += ids.size();
 | 
						|
 | 
						|
        // process the accepted tokens and update contexts
 | 
						|
        //
 | 
						|
        // this is the standard token post-processing that we normally do
 | 
						|
        // in this case, we do it for a group of accepted tokens at once
 | 
						|
        //
 | 
						|
        for (size_t i = 0; i < ids.size(); ++i) {
 | 
						|
            prompt_tgt.push_back(id_last);
 | 
						|
 | 
						|
            id_last = ids[i];
 | 
						|
 | 
						|
            if (llama_vocab_is_eog(vocab, id_last)) {
 | 
						|
                has_eos = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            const std::string token_str = common_token_to_piece(ctx_tgt, id_last);
 | 
						|
 | 
						|
            if (params.use_color && i + 1 < ids.size()) {
 | 
						|
                LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
 | 
						|
            } else {
 | 
						|
                LOG("%s", token_str.c_str());
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last);
 | 
						|
 | 
						|
        {
 | 
						|
            LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
 | 
						|
 | 
						|
            llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
 | 
						|
        }
 | 
						|
 | 
						|
        if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    auto t_dec_end = ggml_time_us();
 | 
						|
 | 
						|
    const int n_input = inp.size();
 | 
						|
 | 
						|
    LOG("\n\n");
 | 
						|
 | 
						|
    LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | 
						|
    LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | 
						|
 | 
						|
    LOG_INF("\n");
 | 
						|
    LOG_INF("n_draft   = %d\n", n_draft);
 | 
						|
    LOG_INF("n_predict = %d\n", n_predict);
 | 
						|
    LOG_INF("n_drafted = %d\n", n_drafted);
 | 
						|
    LOG_INF("n_accept  = %d\n", n_accept);
 | 
						|
    LOG_INF("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | 
						|
 | 
						|
    LOG_INF("\n");
 | 
						|
    LOG_INF("draft:\n\n");
 | 
						|
 | 
						|
    llama_perf_context_print(ctx_dft);
 | 
						|
 | 
						|
    LOG_INF("\n");
 | 
						|
    LOG_INF("target:\n\n");
 | 
						|
    common_perf_print(ctx_tgt, smpl);
 | 
						|
 | 
						|
    common_sampler_free(smpl);
 | 
						|
    common_speculative_free(spec);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    LOG("\n\n");
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |