mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 d7e852c1bc
			
		
	
	d7e852c1bc
	
	
	
		
			
			* Update brute force test: add_special * Update brute force test: default values for add_bos_token and add_eos_token * Enable rtrim when pre-inserting BOS Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Revert "server : fix test regexes"
		
			
				
	
	
		
			336 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Test libllama tokenizer == AutoTokenizer.
 | ||
| # Brute force random words/text generation.
 | ||
| #
 | ||
| # Sample usage:
 | ||
| #
 | ||
| #   python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
 | ||
| #
 | ||
| 
 | ||
| import time
 | ||
| import logging
 | ||
| import argparse
 | ||
| import subprocess
 | ||
| import random
 | ||
| 
 | ||
| from typing import Callable, Iterator
 | ||
| 
 | ||
| import cffi
 | ||
| from transformers import AutoTokenizer
 | ||
| 
 | ||
| logger = logging.getLogger("test-tokenizer-random-bpe")
 | ||
| 
 | ||
| 
 | ||
| class LibLlama:
 | ||
| 
 | ||
|     DEFAULT_PATH_LLAMA_H = "./llama.h"
 | ||
|     DEFAULT_PATH_LIBLLAMA = "./build/libllama.so"  # CMakeLists.txt: BUILD_SHARED_LIBS ON
 | ||
| 
 | ||
|     def __init__(self, path_llama_h: str = None, path_libllama: str = None):
 | ||
|         path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
 | ||
|         path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
 | ||
|         (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
 | ||
|         self.lib.llama_backend_init()
 | ||
| 
 | ||
|     def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
 | ||
|         cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
 | ||
|         res = subprocess.run(cmd, stdout=subprocess.PIPE)
 | ||
|         assert (res.returncode == 0)
 | ||
|         source = res.stdout.decode()
 | ||
|         ffi = cffi.FFI()
 | ||
|         if True:  # workarounds for pycparser
 | ||
|             source = "typedef struct { } __builtin_va_list;" + "\n" + source
 | ||
|             source = source.replace("sizeof (int)",    str(ffi.sizeof("int")))
 | ||
|             source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
 | ||
|             source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
 | ||
|             source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
 | ||
|         ffi.cdef(source, override=True)
 | ||
|         lib = ffi.dlopen(path_libllama)
 | ||
|         return (ffi, lib)
 | ||
| 
 | ||
|     def model_default_params(self, **kwargs):
 | ||
|         mparams = self.lib.llama_model_default_params()
 | ||
|         for k, v in kwargs.items():
 | ||
|             setattr(mparams, k, v)
 | ||
|         return mparams
 | ||
| 
 | ||
|     def context_default_params(self, **kwargs):
 | ||
|         cparams = self.lib.llama_context_default_params()
 | ||
|         for k, v in kwargs.items():
 | ||
|             setattr(cparams, k, v)
 | ||
|         return cparams
 | ||
| 
 | ||
| 
 | ||
| class LibLlamaModel:
 | ||
| 
 | ||
|     def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
 | ||
|         self.lib = libllama.lib
 | ||
|         self.ffi = libllama.ffi
 | ||
|         if isinstance(mparams, dict):
 | ||
|             mparams = libllama.model_default_params(**mparams)
 | ||
|         self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
 | ||
|         if not self.model:
 | ||
|             raise RuntimeError("error: failed to load model '%s'" % path_model)
 | ||
|         if isinstance(cparams, dict):
 | ||
|             cparams = libllama.context_default_params(**cparams)
 | ||
|         self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
 | ||
|         if not self.ctx:
 | ||
|             raise RuntimeError("error: failed to create context for model '%s'" % path_model)
 | ||
|         n_tokens_max = self.lib.llama_n_ctx(self.ctx)
 | ||
|         self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
 | ||
| 
 | ||
|     def free(self):
 | ||
|         if self.ctx:
 | ||
|             self.lib.llama_free(self.ctx)
 | ||
|         if self.model:
 | ||
|             self.lib.llama_free_model(self.model)
 | ||
|         self.ctx = None
 | ||
|         self.model = None
 | ||
|         self.lib = None
 | ||
| 
 | ||
|     def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
 | ||
|         n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
 | ||
|         text = text.encode("utf-8")
 | ||
|         num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
 | ||
|         if num < 0:
 | ||
|             return []
 | ||
|         return list(self.token_ids[0:num])
 | ||
| 
 | ||
| 
 | ||
| def generator_custom_text() -> Iterator[str]:
 | ||
|     """General tests"""
 | ||
|     yield from [
 | ||
|         "",
 | ||
|         " ",
 | ||
|         "  ",
 | ||
|         "   ",
 | ||
|         "\t",
 | ||
|         "\n",
 | ||
|         "\n\n",
 | ||
|         "\n\n\n",
 | ||
|         "\t\n",
 | ||
|         "Hello world",
 | ||
|         " Hello world",
 | ||
|         "Hello World",
 | ||
|         " Hello World",
 | ||
|         " Hello World!",
 | ||
|         "Hello, world!",
 | ||
|         " Hello, world!",
 | ||
|         " this is 🦙.cpp",
 | ||
|         "w048 7tuijk dsdfhu",
 | ||
|         "нещо на Български",
 | ||
|         "កាន់តែពិសេសអាចខលចេញ",
 | ||
|         "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
 | ||
|         "Hello",
 | ||
|         " Hello",
 | ||
|         "  Hello",
 | ||
|         "   Hello",
 | ||
|         "    Hello",
 | ||
|         "    Hello\n    Hello",
 | ||
|         " (",
 | ||
|         "\n =",
 | ||
|         "' era",
 | ||
|         "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
 | ||
|         "3",
 | ||
|         "33",
 | ||
|         "333",
 | ||
|         "3333",
 | ||
|         "33333",
 | ||
|         "333333",
 | ||
|         "3333333",
 | ||
|         "33333333",
 | ||
|         "333333333",
 | ||
|     ]
 | ||
| 
 | ||
| 
 | ||
| def generator_custom_text_edge_cases() -> Iterator[str]:
 | ||
|     """Edge cases found while debugging"""
 | ||
|     yield from [
 | ||
|         '\x1f-a',     # unicode_ranges_control, {0x00001C, 0x00001F}
 | ||
|         '¼-a',        # unicode_ranges_digit, 0x00BC
 | ||
|         '½-a',        # unicode_ranges_digit, 0x00BD
 | ||
|         '¾-a',        # unicode_ranges_digit, 0x00BE
 | ||
|         'a 〇b',      # unicode_ranges_digit, 0x3007
 | ||
|         'Ⅵ-a',       # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
 | ||
|         '\uFEFF//',   # unicode_ranges_control, 0xFEFF (BOM)
 | ||
|         'Cửa Việt',   # llama-3, ignore_merges = true
 | ||
|         '<s>a',       # Phi-3 fail
 | ||
|         '<unk><|endoftext|><s>',  # Phi-3 fail
 | ||
|         'a\na',       # TODO: Bert fail
 | ||
|     ]
 | ||
| 
 | ||
| 
 | ||
| def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
 | ||
|     special_tokens = set(tokenizer.all_special_tokens)
 | ||
|     special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"])
 | ||
|     special_tokens = list(sorted(special_tokens))
 | ||
|     rand = random.Random()
 | ||
|     for m in range(iterations):
 | ||
|         rand.seed(m)
 | ||
|         words = rand.choices(special_tokens, k=500)
 | ||
|         if tokenizer.add_bos_token:  # skip spam warning of double BOS
 | ||
|             while words and words[0] == tokenizer.bos_token:
 | ||
|                 words.pop(0)
 | ||
|         yield "".join(words)
 | ||
| 
 | ||
| 
 | ||
| def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
 | ||
|     """Brute force check all vocab words"""
 | ||
|     yield from vocab
 | ||
| 
 | ||
| 
 | ||
| def generator_random_chars(iterations=100) -> Iterator[str]:
 | ||
|     """Brute force random text with simple characters"""
 | ||
| 
 | ||
|     WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
 | ||
|     CHARS = list(sorted(set("""
 | ||
|         ABCDEFGHIJKLMNOPQRSTUVWXYZ
 | ||
|         abcdefghijklmnopqrstuvwxyz
 | ||
|         ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
 | ||
|         áéíóúàèìòùâêîôûäëïöü
 | ||
|         .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
 | ||
|     """)))
 | ||
| 
 | ||
|     rand = random.Random()
 | ||
|     for m in range(iterations):
 | ||
|         rand.seed(m)
 | ||
|         text = []
 | ||
|         num_words = rand.randint(300, 400)
 | ||
|         for i in range(num_words):
 | ||
|             k = rand.randint(1, 7)
 | ||
|             word = rand.choices(CHARS, k=k)
 | ||
|             space = rand.choice(WHITESPACES)
 | ||
|             text.append("".join(word) + space)
 | ||
|         yield "".join(text)
 | ||
| 
 | ||
| 
 | ||
| def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
 | ||
|     """Brute force random text with vocab characters"""
 | ||
| 
 | ||
|     vocab_chars = set()
 | ||
|     for word in vocab:
 | ||
|         vocab_chars.update(word)
 | ||
|     vocab_chars = list(sorted(vocab_chars))
 | ||
| 
 | ||
|     rand = random.Random()
 | ||
|     for m in range(iterations):
 | ||
|         rand.seed(m)
 | ||
|         text = rand.choices(vocab_chars, k=1024)
 | ||
|         yield "".join(text)
 | ||
| 
 | ||
| 
 | ||
| def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
 | ||
|     """Brute force random text from vocab words"""
 | ||
| 
 | ||
|     vocab = [w.strip() for w in vocab]
 | ||
|     yield from vocab
 | ||
| 
 | ||
|     rand = random.Random()
 | ||
|     for m in range(iterations):
 | ||
|         rand.seed(m)
 | ||
|         text = []
 | ||
|         num_words = rand.randint(300, 400)
 | ||
|         for i in range(num_words):
 | ||
|             k = rand.randint(1, 3)
 | ||
|             words = rand.choices(vocab, k=k)
 | ||
|             sep = rand.choice("     \n\r\t")
 | ||
|             text.append("".join(words) + sep)
 | ||
|         yield "".join(text)
 | ||
| 
 | ||
| 
 | ||
| def generator_random_bytes(iterations=100) -> Iterator[str]:
 | ||
|     """Brute force random bytes"""
 | ||
| 
 | ||
|     WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
 | ||
| 
 | ||
|     rand = random.Random()
 | ||
|     for m in range(iterations):
 | ||
|         rand.seed(m)
 | ||
|         text = []
 | ||
|         num_words = rand.randint(300, 400)
 | ||
|         for i in range(num_words):
 | ||
|             k = rand.randint(1, 8)
 | ||
|             word = [chr(r) for r in rand.randbytes(k) if r]
 | ||
|             word.append(rand.choice(WHITESPACES))
 | ||
|             text.append("".join(word))
 | ||
|         yield "".join(text)
 | ||
| 
 | ||
| 
 | ||
| def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
 | ||
| 
 | ||
|     def find_first_mismatch(ids1: list[int], ids2: list[int]):
 | ||
|         for i, (a, b) in enumerate(zip(ids1, ids2)):
 | ||
|             if a != b:
 | ||
|                 return i
 | ||
|         if len(ids1) == len(ids2):
 | ||
|             return -1
 | ||
|         return min(len(ids1), len(ids2))
 | ||
| 
 | ||
|     t0 = time.perf_counter()
 | ||
|     logger.info("%s: %s" % (generator.__name__, "ini"))
 | ||
|     for text in generator:
 | ||
|         ids1 = func_tokenize1(text)
 | ||
|         ids2 = func_tokenize2(text)
 | ||
|         if ids1 != ids2:
 | ||
|             i = find_first_mismatch(ids1, ids2)
 | ||
|             ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
 | ||
|             ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
 | ||
|             logger.info(" TokenIDs: " + str(ids1))
 | ||
|             logger.info(" Expected: " + str(ids2))
 | ||
|             raise Exception()
 | ||
|     t1 = time.perf_counter()
 | ||
|     logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
 | ||
| 
 | ||
| 
 | ||
| def main(argv: list[str] = None):
 | ||
|     parser = argparse.ArgumentParser()
 | ||
|     parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
 | ||
|     parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
 | ||
|     parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
 | ||
|     args = parser.parse_args(argv)
 | ||
| 
 | ||
|     logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | ||
| 
 | ||
|     model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
 | ||
|     tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
 | ||
| 
 | ||
|     tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True)
 | ||
|     tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False)
 | ||
| 
 | ||
|     def func_tokenize1(text: str):
 | ||
|         return model.tokenize(text, add_special=True, parse_special=True)
 | ||
| 
 | ||
|     def func_tokenize2(text: str):
 | ||
|         return tokenizer.encode(text, add_special_tokens=True)
 | ||
| 
 | ||
|     vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000))
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
 | ||
|     test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
 | ||
|     # test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
 | ||
| 
 | ||
|     model.free()
 | ||
| 
 | ||
| 
 | ||
| if __name__ == "__main__":
 | ||
|     # main()
 | ||
| 
 | ||
|     path_tokenizers = "./models/tokenizers/"
 | ||
|     path_vocab_format = "./models/ggml-vocab-%s.gguf"
 | ||
| 
 | ||
|     # import os
 | ||
|     # tokenizers = os.listdir(path_tokenizers)
 | ||
|     tokenizers = [
 | ||
|         "llama-spm",   # SPM
 | ||
|         "phi-3",       # SPM
 | ||
|     ]
 | ||
| 
 | ||
|     for tokenizer in tokenizers:
 | ||
|         print("\n" + "=" * 50 + "\n" + tokenizer + "\n")  # noqa
 | ||
|         vocab_file = path_vocab_format % tokenizer
 | ||
|         dir_tokenizer = path_tokenizers + "/" + tokenizer
 | ||
|         main([vocab_file, dir_tokenizer, "--verbose"])
 |