mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
		
			
				
	
	
		
			224 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Defines sigaction on msys:
 | 
						|
#ifndef _GNU_SOURCE
 | 
						|
#define _GNU_SOURCE
 | 
						|
#endif
 | 
						|
 | 
						|
#include "embd-input.h"
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cinttypes>
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <ctime>
 | 
						|
#include <fstream>
 | 
						|
#include <iostream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static llama_context ** g_ctx;
 | 
						|
 | 
						|
extern "C" {
 | 
						|
 | 
						|
struct MyModel* create_mymodel(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (gpt_params_parse(argc, argv, params) == false) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | 
						|
 | 
						|
    if (params.seed == LLAMA_DEFAULT_SEED) {
 | 
						|
        params.seed = uint32_t(time(NULL));
 | 
						|
    }
 | 
						|
    fprintf(stderr, "%s: seed  = %d\n", __func__, params.seed);
 | 
						|
 | 
						|
    llama_backend_init(params.numa);
 | 
						|
 | 
						|
    llama_model * model;
 | 
						|
    llama_context * ctx;
 | 
						|
 | 
						|
    g_ctx = &ctx;
 | 
						|
 | 
						|
    // load the model and apply lora adapter, if any
 | 
						|
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
						|
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
						|
    }
 | 
						|
    struct MyModel * ret = new MyModel();
 | 
						|
    ret->ctx = ctx;
 | 
						|
    ret->params = params;
 | 
						|
    ret->n_past = 0;
 | 
						|
    // printf("ctx: %d\n", ret->ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
void free_mymodel(struct MyModel * mymodel) {
 | 
						|
    llama_context * ctx = mymodel->ctx;
 | 
						|
    llama_print_timings(ctx);
 | 
						|
    llama_free(ctx);
 | 
						|
    delete mymodel;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool eval_float(void * model, float * input, int N){
 | 
						|
    MyModel * mymodel = (MyModel*)model;
 | 
						|
    llama_context * ctx = mymodel->ctx;
 | 
						|
    gpt_params params = mymodel->params;
 | 
						|
    int n_emb = llama_n_embd(ctx);
 | 
						|
    int n_past = mymodel->n_past;
 | 
						|
    int n_batch = N; // params.n_batch;
 | 
						|
 | 
						|
    for (int i = 0; i < (int) N; i += n_batch) {
 | 
						|
        int n_eval = (int) N - i;
 | 
						|
        if (n_eval > n_batch) {
 | 
						|
            n_eval = n_batch;
 | 
						|
        }
 | 
						|
        if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        n_past += n_eval;
 | 
						|
    }
 | 
						|
    mymodel->n_past = n_past;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
 | 
						|
    MyModel * mymodel = (MyModel* )model;
 | 
						|
    llama_context * ctx;
 | 
						|
    ctx = mymodel->ctx;
 | 
						|
    gpt_params params = mymodel->params;
 | 
						|
    int n_past = mymodel->n_past;
 | 
						|
    for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
 | 
						|
        int n_eval = (int) tokens.size() - i;
 | 
						|
        if (n_eval > params.n_batch) {
 | 
						|
            n_eval = params.n_batch;
 | 
						|
        }
 | 
						|
        if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        n_past += n_eval;
 | 
						|
    }
 | 
						|
    mymodel->n_past = n_past;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool eval_id(struct MyModel* mymodel, int id) {
 | 
						|
    std::vector<llama_token> tokens;
 | 
						|
    tokens.push_back(id);
 | 
						|
    return eval_tokens(mymodel, tokens);
 | 
						|
}
 | 
						|
 | 
						|
bool eval_string(struct MyModel * mymodel,const char* str){
 | 
						|
    llama_context * ctx = mymodel->ctx;
 | 
						|
    std::string str2 = str;
 | 
						|
    std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
 | 
						|
    eval_tokens(mymodel, embd_inp);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
llama_token sampling_id(struct MyModel* mymodel) {
 | 
						|
    llama_context* ctx = mymodel->ctx;
 | 
						|
    gpt_params params = mymodel->params;
 | 
						|
    // int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    // out of user input, sample next token
 | 
						|
    const float   temp            = params.temp;
 | 
						|
    const int32_t top_k           = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
 | 
						|
    const float   top_p           = params.top_p;
 | 
						|
    const float   tfs_z           = params.tfs_z;
 | 
						|
    const float   typical_p       = params.typical_p;
 | 
						|
    // const int32_t repeat_last_n   = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
 | 
						|
    // const float   repeat_penalty  = params.repeat_penalty;
 | 
						|
    // const float   alpha_presence  = params.presence_penalty;
 | 
						|
    // const float   alpha_frequency = params.frequency_penalty;
 | 
						|
    const int     mirostat        = params.mirostat;
 | 
						|
    const float   mirostat_tau    = params.mirostat_tau;
 | 
						|
    const float   mirostat_eta    = params.mirostat_eta;
 | 
						|
    // const bool    penalize_nl     = params.penalize_nl;
 | 
						|
 | 
						|
    llama_token id = 0;
 | 
						|
    {
 | 
						|
        auto logits  = llama_get_logits(ctx);
 | 
						|
        auto n_vocab = llama_n_vocab(ctx);
 | 
						|
 | 
						|
        // Apply params.logit_bias map
 | 
						|
        for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
 | 
						|
            logits[it->first] += it->second;
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<llama_token_data> candidates;
 | 
						|
        candidates.reserve(n_vocab);
 | 
						|
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
            candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
						|
 | 
						|
        // TODO: Apply penalties
 | 
						|
        // float nl_logit = logits[llama_token_nl(ctx)];
 | 
						|
        // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
 | 
						|
        // llama_sample_repetition_penalty(ctx, &candidates_p,
 | 
						|
        //      last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
        //      last_n_repeat, repeat_penalty);
 | 
						|
        // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | 
						|
        // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
        // last_n_repeat, alpha_frequency, alpha_presence);
 | 
						|
        // if (!penalize_nl) {
 | 
						|
        //     logits[llama_token_nl(ctx)] = nl_logit;
 | 
						|
        // }
 | 
						|
 | 
						|
        if (temp <= 0) {
 | 
						|
            // Greedy sampling
 | 
						|
            id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
						|
        } else {
 | 
						|
            if (mirostat == 1) {
 | 
						|
                static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                const int mirostat_m = 100;
 | 
						|
                llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | 
						|
            } else if (mirostat == 2) {
 | 
						|
                static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | 
						|
            } else {
 | 
						|
                // Temperature sampling
 | 
						|
                llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | 
						|
                llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
 | 
						|
                llama_sample_typical(ctx, &candidates_p, typical_p, 1);
 | 
						|
                llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | 
						|
                llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                id = llama_sample_token(ctx, &candidates_p);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return id;
 | 
						|
}
 | 
						|
 | 
						|
const char * sampling(struct MyModel * mymodel) {
 | 
						|
    llama_context * ctx = mymodel->ctx;
 | 
						|
    int id = sampling_id(mymodel);
 | 
						|
    static std::string ret;
 | 
						|
    if (id == llama_token_eos(ctx)) {
 | 
						|
        ret = "</s>";
 | 
						|
    } else {
 | 
						|
        ret = llama_token_to_piece(ctx, id);
 | 
						|
    }
 | 
						|
    eval_id(mymodel, id);
 | 
						|
    return ret.c_str();
 | 
						|
}
 | 
						|
 | 
						|
}
 |