mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Moved scripts dir and fixed pyproject.toml * updated readme * fixed README urls * bump pypi gguf to v0.14.0 * retrigger ci * empty commit - trigger ci
		
			
				
	
	
		
			455 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import logging
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
import re
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
# Necessary to load the local gguf package
 | 
						|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
 | 
						|
    sys.path.insert(0, str(Path(__file__).parent.parent))
 | 
						|
 | 
						|
from gguf import GGUFReader, GGUFValueType, ReaderTensor  # noqa: E402
 | 
						|
 | 
						|
logger = logging.getLogger("gguf-dump")
 | 
						|
 | 
						|
 | 
						|
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
 | 
						|
    host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
 | 
						|
    if reader.byte_order == 'S':
 | 
						|
        file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
 | 
						|
    else:
 | 
						|
        file_endian = host_endian
 | 
						|
    return (host_endian, file_endian)
 | 
						|
 | 
						|
 | 
						|
# For more information about what field.parts and field.data represent,
 | 
						|
# please see the comments in the modify_gguf.py example.
 | 
						|
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
 | 
						|
    host_endian, file_endian = get_file_host_endian(reader)
 | 
						|
    print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')  # noqa: NP100
 | 
						|
    print(f'* Dumping {len(reader.fields)} key/value pair(s)')  # noqa: NP100
 | 
						|
    for n, field in enumerate(reader.fields.values(), 1):
 | 
						|
        if not field.types:
 | 
						|
            pretty_type = 'N/A'
 | 
						|
        elif field.types[0] == GGUFValueType.ARRAY:
 | 
						|
            nest_count = len(field.types) - 1
 | 
						|
            pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
 | 
						|
        else:
 | 
						|
            pretty_type = str(field.types[-1].name)
 | 
						|
 | 
						|
        log_message = f'  {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
 | 
						|
        if len(field.types) == 1:
 | 
						|
            curr_type = field.types[0]
 | 
						|
            if curr_type == GGUFValueType.STRING:
 | 
						|
                log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
 | 
						|
            elif field.types[0] in reader.gguf_scalar_to_np:
 | 
						|
                log_message += ' = {0}'.format(field.parts[-1][0])
 | 
						|
        print(log_message)  # noqa: NP100
 | 
						|
    if args.no_tensors:
 | 
						|
        return
 | 
						|
    print(f'* Dumping {len(reader.tensors)} tensor(s)')  # noqa: NP100
 | 
						|
    for n, tensor in enumerate(reader.tensors, 1):
 | 
						|
        prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
 | 
						|
        print(f'  {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')  # noqa: NP100
 | 
						|
 | 
						|
 | 
						|
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
 | 
						|
    import json
 | 
						|
    host_endian, file_endian = get_file_host_endian(reader)
 | 
						|
    metadata: dict[str, Any] = {}
 | 
						|
    tensors: dict[str, Any] = {}
 | 
						|
    result = {
 | 
						|
        "filename": args.model,
 | 
						|
        "endian": file_endian,
 | 
						|
        "metadata": metadata,
 | 
						|
        "tensors": tensors,
 | 
						|
    }
 | 
						|
    for idx, field in enumerate(reader.fields.values()):
 | 
						|
        curr: dict[str, Any] = {
 | 
						|
            "index": idx,
 | 
						|
            "type": field.types[0].name if field.types else 'UNKNOWN',
 | 
						|
            "offset": field.offset,
 | 
						|
        }
 | 
						|
        metadata[field.name] = curr
 | 
						|
        if field.types[:1] == [GGUFValueType.ARRAY]:
 | 
						|
            curr["array_types"] = [t.name for t in field.types][1:]
 | 
						|
            if not args.json_array:
 | 
						|
                continue
 | 
						|
            itype = field.types[-1]
 | 
						|
            if itype == GGUFValueType.STRING:
 | 
						|
                curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
 | 
						|
            else:
 | 
						|
                curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
 | 
						|
        elif field.types[0] == GGUFValueType.STRING:
 | 
						|
            curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
 | 
						|
        else:
 | 
						|
            curr["value"] = field.parts[-1].tolist()[0]
 | 
						|
    if not args.no_tensors:
 | 
						|
        for idx, tensor in enumerate(reader.tensors):
 | 
						|
            tensors[tensor.name] = {
 | 
						|
                "index": idx,
 | 
						|
                "shape": tensor.shape.tolist(),
 | 
						|
                "type": tensor.tensor_type.name,
 | 
						|
                "offset": tensor.field.offset,
 | 
						|
            }
 | 
						|
    json.dump(result, sys.stdout)
 | 
						|
 | 
						|
 | 
						|
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
 | 
						|
    # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
 | 
						|
 | 
						|
    # Alignment Utility Function
 | 
						|
    def strAlign(padding: int, alignMode: str | None, strVal: str):
 | 
						|
        if alignMode == 'center':
 | 
						|
            return strVal.center(padding)
 | 
						|
        elif alignMode == 'right':
 | 
						|
            return strVal.rjust(padding - 1) + ' '
 | 
						|
        elif alignMode == 'left':
 | 
						|
            return ' ' + strVal.ljust(padding - 1)
 | 
						|
        else: # default left
 | 
						|
            return ' ' + strVal.ljust(padding - 1)
 | 
						|
 | 
						|
    def dashAlign(padding: int, alignMode: str | None):
 | 
						|
        if alignMode == 'center':
 | 
						|
            return ':' + '-' * (padding - 2) + ':'
 | 
						|
        elif alignMode == 'right':
 | 
						|
            return '-' * (padding - 1) + ':'
 | 
						|
        elif alignMode == 'left':
 | 
						|
            return ':' + '-' * (padding - 1)
 | 
						|
        else: # default left
 | 
						|
            return '-' * (padding)
 | 
						|
 | 
						|
    # Calculate Padding For Each Column Based On Header and Data Length
 | 
						|
    rowsPadding = {}
 | 
						|
    for index, columnEntry in enumerate(header_map):
 | 
						|
        padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
 | 
						|
        headerPadCount = len(columnEntry['header_name']) + 2
 | 
						|
        rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
 | 
						|
 | 
						|
    # Render Markdown Header
 | 
						|
    rows = []
 | 
						|
    rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
 | 
						|
    rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
 | 
						|
 | 
						|
    # Render Tabular Data
 | 
						|
    for item in data:
 | 
						|
        rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
 | 
						|
 | 
						|
    # Convert Tabular String Rows Into String
 | 
						|
    tableString = ""
 | 
						|
    for row in rows:
 | 
						|
        tableString += f'|{row}|\n'
 | 
						|
 | 
						|
    return tableString
 | 
						|
 | 
						|
 | 
						|
def element_count_rounded_notation(count: int) -> str:
 | 
						|
    if count > 1e15 :
 | 
						|
        # Quadrillion
 | 
						|
        scaled_amount = count * 1e-15
 | 
						|
        scale_suffix = "Q"
 | 
						|
    elif count > 1e12 :
 | 
						|
        # Trillions
 | 
						|
        scaled_amount = count * 1e-12
 | 
						|
        scale_suffix = "T"
 | 
						|
    elif count > 1e9 :
 | 
						|
        # Billions
 | 
						|
        scaled_amount = count * 1e-9
 | 
						|
        scale_suffix = "B"
 | 
						|
    elif count > 1e6 :
 | 
						|
        # Millions
 | 
						|
        scaled_amount = count * 1e-6
 | 
						|
        scale_suffix = "M"
 | 
						|
    elif count > 1e3 :
 | 
						|
        # Thousands
 | 
						|
        scaled_amount = count * 1e-3
 | 
						|
        scale_suffix = "K"
 | 
						|
    else:
 | 
						|
        # Under Thousands
 | 
						|
        scaled_amount = count
 | 
						|
        scale_suffix = ""
 | 
						|
    return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
 | 
						|
 | 
						|
 | 
						|
def translate_tensor_name(name):
 | 
						|
    words = name.split(".")
 | 
						|
 | 
						|
    # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
 | 
						|
    abbreviation_dictionary = {
 | 
						|
        'token_embd': 'Token embedding',
 | 
						|
        'pos_embd': 'Position embedding',
 | 
						|
        'output_norm': 'Output normalization',
 | 
						|
        'output': 'Output',
 | 
						|
        'attn_norm': 'Attention normalization',
 | 
						|
        'attn_norm_2': 'Attention normalization',
 | 
						|
        'attn_qkv': 'Attention query-key-value',
 | 
						|
        'attn_q': 'Attention query',
 | 
						|
        'attn_k': 'Attention key',
 | 
						|
        'attn_v': 'Attention value',
 | 
						|
        'attn_output': 'Attention output',
 | 
						|
        'ffn_norm': 'Feed-forward network normalization',
 | 
						|
        'ffn_up': 'Feed-forward network "up"',
 | 
						|
        'ffn_gate': 'Feed-forward network "gate"',
 | 
						|
        'ffn_down': 'Feed-forward network "down"',
 | 
						|
        'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
 | 
						|
        'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
 | 
						|
        'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
 | 
						|
        'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
 | 
						|
        'ssm_in': 'State space model input projections',
 | 
						|
        'ssm_conv1d': 'State space model rolling/shift',
 | 
						|
        'ssm_x': 'State space model selective parametrization',
 | 
						|
        'ssm_a': 'State space model state compression',
 | 
						|
        'ssm_d': 'State space model skip connection',
 | 
						|
        'ssm_dt': 'State space model time step',
 | 
						|
        'ssm_out': 'State space model output projection',
 | 
						|
        'blk': 'Block',
 | 
						|
        'enc': 'Encoder',
 | 
						|
        'dec': 'Decoder',
 | 
						|
    }
 | 
						|
 | 
						|
    expanded_words = []
 | 
						|
    for word in words:
 | 
						|
        word_norm = word.strip().lower()
 | 
						|
        if word_norm in abbreviation_dictionary:
 | 
						|
            expanded_words.append(abbreviation_dictionary[word_norm].title())
 | 
						|
        else:
 | 
						|
            expanded_words.append(word.title())
 | 
						|
 | 
						|
    return ' '.join(expanded_words)
 | 
						|
 | 
						|
 | 
						|
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
 | 
						|
    host_endian, file_endian = get_file_host_endian(reader)
 | 
						|
    markdown_content = ""
 | 
						|
    markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
 | 
						|
    markdown_content += f'- Endian: {file_endian} endian\n'
 | 
						|
    markdown_content += '\n'
 | 
						|
    markdown_content += '## Key Value Metadata Store\n\n'
 | 
						|
    markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
 | 
						|
    markdown_content += '\n'
 | 
						|
 | 
						|
    kv_dump_table: list[dict[str, str | int]] = []
 | 
						|
    for n, field in enumerate(reader.fields.values(), 1):
 | 
						|
        if not field.types:
 | 
						|
            pretty_type = 'N/A'
 | 
						|
        elif field.types[0] == GGUFValueType.ARRAY:
 | 
						|
            nest_count = len(field.types) - 1
 | 
						|
            pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
 | 
						|
        else:
 | 
						|
            pretty_type = str(field.types[-1].name)
 | 
						|
 | 
						|
        def escape_markdown_inline_code(value_string):
 | 
						|
            # Find the longest contiguous sequence of backticks in the string then
 | 
						|
            # wrap string with appropriate number of backticks required to escape it
 | 
						|
            max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
 | 
						|
            inline_code_marker = '`' * (max_backticks + 1)
 | 
						|
 | 
						|
            # If the string starts or ends with a backtick, add a space at the beginning and end
 | 
						|
            if value_string.startswith('`') or value_string.endswith('`'):
 | 
						|
                value_string = f" {value_string} "
 | 
						|
 | 
						|
            return f"{inline_code_marker}{value_string}{inline_code_marker}"
 | 
						|
 | 
						|
        total_elements = len(field.data)
 | 
						|
        value = ""
 | 
						|
        if len(field.types) == 1:
 | 
						|
            curr_type = field.types[0]
 | 
						|
            if curr_type == GGUFValueType.STRING:
 | 
						|
                truncate_length = 60
 | 
						|
                value_string = str(bytes(field.parts[-1]), encoding='utf-8')
 | 
						|
                if len(value_string) > truncate_length:
 | 
						|
                    head = escape_markdown_inline_code(value_string[:truncate_length // 2])
 | 
						|
                    tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
 | 
						|
                    value = "{head}...{tail}".format(head=head, tail=tail)
 | 
						|
                else:
 | 
						|
                    value = escape_markdown_inline_code(value_string)
 | 
						|
            elif curr_type in reader.gguf_scalar_to_np:
 | 
						|
                value = str(field.parts[-1][0])
 | 
						|
        else:
 | 
						|
            if field.types[0] == GGUFValueType.ARRAY:
 | 
						|
                curr_type = field.types[1]
 | 
						|
                array_elements = []
 | 
						|
 | 
						|
                if curr_type == GGUFValueType.STRING:
 | 
						|
                    render_element = min(5, total_elements)
 | 
						|
                    for element_pos in range(render_element):
 | 
						|
                        truncate_length = 30
 | 
						|
                        value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
 | 
						|
                        if len(value_string) > truncate_length:
 | 
						|
                            head = escape_markdown_inline_code(value_string[:truncate_length // 2])
 | 
						|
                            tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
 | 
						|
                            value = "{head}...{tail}".format(head=head, tail=tail)
 | 
						|
                        else:
 | 
						|
                            value = escape_markdown_inline_code(value_string)
 | 
						|
                        array_elements.append(value)
 | 
						|
 | 
						|
                elif curr_type in reader.gguf_scalar_to_np:
 | 
						|
                    render_element = min(7, total_elements)
 | 
						|
                    for element_pos in range(render_element):
 | 
						|
                        array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
 | 
						|
 | 
						|
                value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
 | 
						|
 | 
						|
        kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
 | 
						|
 | 
						|
    kv_dump_table_header_map = [
 | 
						|
        {'key_name':'n',                'header_name':'POS',      'align':'right'},
 | 
						|
        {'key_name':'pretty_type',      'header_name':'TYPE',     'align':'left'},
 | 
						|
        {'key_name':'total_elements',   'header_name':'Count',    'align':'right'},
 | 
						|
        {'key_name':'field_name',       'header_name':'Key',      'align':'left'},
 | 
						|
        {'key_name':'value',            'header_name':'Value',    'align':'left'},
 | 
						|
    ]
 | 
						|
 | 
						|
    markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
 | 
						|
 | 
						|
    markdown_content += "\n"
 | 
						|
 | 
						|
    if not args.no_tensors:
 | 
						|
        # Group tensors by their prefix and maintain order
 | 
						|
        tensor_prefix_order: list[str] = []
 | 
						|
        tensor_name_to_key: dict[str, int] = {}
 | 
						|
        tensor_groups: dict[str, list[ReaderTensor]] = {}
 | 
						|
        total_elements = sum(tensor.n_elements for tensor in reader.tensors)
 | 
						|
 | 
						|
        # Parsing Tensors Record
 | 
						|
        for key, tensor in enumerate(reader.tensors):
 | 
						|
            tensor_components = tensor.name.split('.')
 | 
						|
 | 
						|
            # Classify Tensor Group
 | 
						|
            tensor_group_name = "base"
 | 
						|
            if tensor_components[0] == 'blk':
 | 
						|
                tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
 | 
						|
            elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
 | 
						|
                tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
 | 
						|
            elif tensor_components[0] in ['enc', 'dec']:
 | 
						|
                tensor_group_name = f"{tensor_components[0]}"
 | 
						|
 | 
						|
            # Check if new Tensor Group
 | 
						|
            if tensor_group_name not in tensor_groups:
 | 
						|
                tensor_groups[tensor_group_name] = []
 | 
						|
                tensor_prefix_order.append(tensor_group_name)
 | 
						|
 | 
						|
            # Record Tensor and Tensor Position
 | 
						|
            tensor_groups[tensor_group_name].append(tensor)
 | 
						|
            tensor_name_to_key[tensor.name] = key
 | 
						|
 | 
						|
        # Tensors Mapping Dump
 | 
						|
        markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
 | 
						|
        markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
 | 
						|
        markdown_content += '\n'
 | 
						|
 | 
						|
        for group in tensor_prefix_order:
 | 
						|
            tensors = tensor_groups[group]
 | 
						|
            group_elements = sum(tensor.n_elements for tensor in tensors)
 | 
						|
            markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
 | 
						|
 | 
						|
        markdown_content += "\n"
 | 
						|
 | 
						|
        markdown_content += "### Tensor Data Offset\n"
 | 
						|
        markdown_content += '\n'
 | 
						|
        markdown_content += 'This table contains the offset and data segment relative to start of file\n'
 | 
						|
        markdown_content += '\n'
 | 
						|
 | 
						|
        tensor_mapping_table: list[dict[str, str | int]] = []
 | 
						|
        for key, tensor in enumerate(reader.tensors):
 | 
						|
            data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
 | 
						|
            data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
 | 
						|
            tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
 | 
						|
 | 
						|
        tensors_mapping_table_header_map = [
 | 
						|
            {'key_name':'t_id',         'header_name':'T_ID',               'align':'right'},
 | 
						|
            {'key_name':'layer_name',   'header_name':'Tensor Layer Name',  'align':'left'},
 | 
						|
            {'key_name':'data_offset',  'header_name':'Data Offset (B)',    'align':'right'},
 | 
						|
            {'key_name':'data_size',    'header_name':'Data Size (B)',      'align':'right'},
 | 
						|
        ]
 | 
						|
 | 
						|
        markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
 | 
						|
        markdown_content += "\n"
 | 
						|
 | 
						|
        for group in tensor_prefix_order:
 | 
						|
            tensors = tensor_groups[group]
 | 
						|
            group_elements = sum(tensor.n_elements for tensor in tensors)
 | 
						|
            group_percentage = group_elements / total_elements * 100
 | 
						|
            markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
 | 
						|
 | 
						|
            # Precalculate column sizing for visual consistency
 | 
						|
            prettify_element_est_count_size: int = 1
 | 
						|
            prettify_element_count_size: int = 1
 | 
						|
            prettify_dimension_max_widths: dict[int, int] = {}
 | 
						|
            for tensor in tensors:
 | 
						|
                prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
 | 
						|
                prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
 | 
						|
                for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
 | 
						|
                    prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
 | 
						|
 | 
						|
            # Generate Tensor Layer Table Content
 | 
						|
            tensor_dump_table: list[dict[str, str | int]] = []
 | 
						|
            for tensor in tensors:
 | 
						|
                human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
 | 
						|
                pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
 | 
						|
                element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
 | 
						|
                element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
 | 
						|
                type_name_string = f"{tensor.tensor_type.name}"
 | 
						|
                tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
 | 
						|
 | 
						|
            tensor_dump_table_header_map = [
 | 
						|
                {'key_name':'t_id',             'header_name':'T_ID',                             'align':'right'},
 | 
						|
                {'key_name':'layer_name',       'header_name':'Tensor Layer Name',                'align':'left'},
 | 
						|
                {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
 | 
						|
                {'key_name':'element_count',    'header_name':'Elements',                         'align':'left'},
 | 
						|
                {'key_name':'pretty_dimension', 'header_name':'Shape',                            'align':'left'},
 | 
						|
                {'key_name':'tensor_type',      'header_name':'Type',                             'align':'left'},
 | 
						|
            ]
 | 
						|
 | 
						|
            markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
 | 
						|
 | 
						|
            markdown_content += "\n"
 | 
						|
            markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
 | 
						|
            markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
 | 
						|
            markdown_content += "\n\n"
 | 
						|
 | 
						|
    print(markdown_content)  # noqa: NP100
 | 
						|
 | 
						|
 | 
						|
def main() -> None:
 | 
						|
    parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
 | 
						|
    parser.add_argument("model",           type=str,            help="GGUF format model filename")
 | 
						|
    parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
 | 
						|
    parser.add_argument("--json",       action="store_true", help="Produce JSON output")
 | 
						|
    parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
 | 
						|
    parser.add_argument("--data-offset",    action="store_true", help="Start of data offset")
 | 
						|
    parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
 | 
						|
    parser.add_argument("--markdown",   action="store_true", help="Produce markdown output")
 | 
						|
    parser.add_argument("--verbose",    action="store_true", help="increase output verbosity")
 | 
						|
 | 
						|
    args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
 | 
						|
 | 
						|
    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | 
						|
 | 
						|
    if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
 | 
						|
        logger.info(f'* Loading: {args.model}')
 | 
						|
 | 
						|
    reader = GGUFReader(args.model, 'r')
 | 
						|
 | 
						|
    if args.json:
 | 
						|
        dump_metadata_json(reader, args)
 | 
						|
    elif args.markdown:
 | 
						|
        dump_markdown_metadata(reader, args)
 | 
						|
    elif args.data_offset:
 | 
						|
        print(reader.data_offset)  # noqa: NP100
 | 
						|
    elif args.data_alignment:
 | 
						|
        print(reader.alignment)  # noqa: NP100
 | 
						|
    else:
 | 
						|
        dump_metadata(reader, args)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |