mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 b853d45601
			
		
	
	b853d45601
	
	
	
		
			
			* detect NUMA systems and pin work threads to nodes (linux) * disable mmap prefetch/readahead for NUMA systems * avoid sending finalize op to thread pool if it does nothing * silence robot * fix args * make --numa a param * recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement * lower synchronization overhead * statically allocate * move numa state to g_state * add description for --numa * ggml : minor style changes * ggml : minor style + try fix sanitizer build * llama : allow to initialize backend with NUMA support * llama : avoid ggml include in llama-util.h * ggml : style / formatting * ggml : fix handling of ops with n_threads > n_tasks > 1 * server : utilize numa parameter --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			676 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			676 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Defines sigaction on msys:
 | |
| #ifndef _GNU_SOURCE
 | |
| #define _GNU_SOURCE
 | |
| #endif
 | |
| 
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static console_state con_st;
 | |
| static llama_context ** g_ctx;
 | |
| 
 | |
| static bool is_interacting = false;
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| void sigint_handler(int signo) {
 | |
|     if (signo == SIGINT) {
 | |
|         if (!is_interacting) {
 | |
|             is_interacting=true;
 | |
|         } else {
 | |
|             console_cleanup(con_st);
 | |
|             printf("\n");
 | |
|             llama_print_timings(*g_ctx);
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // save choice to use color for later
 | |
|     // (note for later: this is a slightly awkward choice)
 | |
|     con_st.use_color = params.use_color;
 | |
|     con_st.multiline_input = params.multiline_input;
 | |
|     console_init(con_st);
 | |
|     atexit([]() { console_cleanup(con_st); });
 | |
| 
 | |
|     if (params.perplexity) {
 | |
|         printf("\n************\n");
 | |
|         printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
 | |
|         printf("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.embedding) {
 | |
|         printf("\n************\n");
 | |
|         printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
 | |
|         printf("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx > 2048) {
 | |
|         fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | |
|                 "expect poor results\n", __func__, params.n_ctx);
 | |
|     } else if (params.n_ctx < 8) {
 | |
|         fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
 | |
|         params.n_ctx = 8;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     if (params.seed < 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed  = %d\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.random_prompt) {
 | |
|         params.prompt = gpt_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
|     llama_init_backend(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
|     g_ctx = &ctx;
 | |
| 
 | |
|     // load the model and apply lora adapter, if any
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | |
|                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | |
|     }
 | |
| 
 | |
|     // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
 | |
|     // uncomment the "used_mem" line in llama.cpp to see the results
 | |
|     if (params.mem_test) {
 | |
|         {
 | |
|             const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
 | |
|             llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             const std::vector<llama_token> tmp = { 0, };
 | |
|             llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
 | |
|         }
 | |
| 
 | |
|         llama_print_timings(ctx);
 | |
|         llama_free(ctx);
 | |
|         llama_free_model(model);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // export the cgraph and exit
 | |
|     if (params.export_cgraph) {
 | |
|         llama_eval_export(ctx, "llama.ggml");
 | |
|         llama_free(ctx);
 | |
|         llama_free_model(model);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     std::string path_session = params.path_prompt_cache;
 | |
|     std::vector<llama_token> session_tokens;
 | |
| 
 | |
|     if (!path_session.empty()) {
 | |
|         fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
 | |
| 
 | |
|         // fopen to check for existing session
 | |
|         FILE * fp = std::fopen(path_session.c_str(), "rb");
 | |
|         if (fp != NULL) {
 | |
|             std::fclose(fp);
 | |
| 
 | |
|             session_tokens.resize(params.n_ctx);
 | |
|             size_t n_token_count_out = 0;
 | |
|             if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
 | |
|                 fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|             session_tokens.resize(n_token_count_out);
 | |
|             llama_set_rng_seed(ctx, params.seed);
 | |
| 
 | |
|             fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<llama_token> embd_inp;
 | |
| 
 | |
|     if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
 | |
|         // Add a space in front of the first character to match OG llama tokenizer behavior
 | |
|         params.prompt.insert(0, 1, ' ');
 | |
| 
 | |
|         embd_inp = ::llama_tokenize(ctx, params.prompt, true);
 | |
|     } else {
 | |
|         embd_inp = session_tokens;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     if ((int) embd_inp.size() > n_ctx - 4) {
 | |
|         fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // debug message about similarity of saved session, if applicable
 | |
|     size_t n_matching_session_tokens = 0;
 | |
|     if (session_tokens.size()) {
 | |
|         for (llama_token id : session_tokens) {
 | |
|             if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
 | |
|                 break;
 | |
|             }
 | |
|             n_matching_session_tokens++;
 | |
|         }
 | |
|         if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
 | |
|             fprintf(stderr, "%s: using full prompt from session file\n", __func__);
 | |
|         } else if (n_matching_session_tokens >= embd_inp.size()) {
 | |
|             fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
 | |
|         } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
 | |
|             fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
 | |
|                 __func__, n_matching_session_tokens, embd_inp.size());
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
 | |
|                 __func__, n_matching_session_tokens, embd_inp.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if we will use the cache for the full prompt without reaching the end of the cache, force
 | |
|     // reevaluation of the last token token to recalculate the cached logits
 | |
|     if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
 | |
|             session_tokens.size() > embd_inp.size()) {
 | |
|         session_tokens.resize(embd_inp.size() - 1);
 | |
|     }
 | |
| 
 | |
|     // number of tokens to keep when resetting context
 | |
|     if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
 | |
|         params.n_keep = (int)embd_inp.size();
 | |
|     }
 | |
| 
 | |
|     // prefix & suffix for instruct mode
 | |
|     const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
 | |
|     const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
 | |
| 
 | |
|     // in instruct mode, we inject a prefix and a suffix to each input by the user
 | |
|     if (params.instruct) {
 | |
|         params.interactive_first = true;
 | |
|         params.antiprompt.push_back("### Instruction:\n\n");
 | |
|     }
 | |
| 
 | |
|     // enable interactive mode if interactive start is specified
 | |
|     if (params.interactive_first) {
 | |
|         params.interactive = true;
 | |
|     }
 | |
| 
 | |
|     // determine newline token
 | |
|     auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
 | |
| 
 | |
|     if (params.verbose_prompt) {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|         fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|         for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|             fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
 | |
|         }
 | |
|         if (params.n_keep > 0) {
 | |
|         fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
 | |
|             for (int i = 0; i < params.n_keep; i++) {
 | |
|                 fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
 | |
|             }
 | |
|             fprintf(stderr, "'\n");
 | |
|         }
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
| 
 | |
|     if (params.interactive) {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
 | |
|         };
 | |
|         SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
| 
 | |
|         fprintf(stderr, "%s: interactive mode on.\n", __func__);
 | |
| 
 | |
|         if (params.antiprompt.size()) {
 | |
|             for (auto antiprompt : params.antiprompt) {
 | |
|                 fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!params.input_prefix.empty()) {
 | |
|             fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
 | |
|         }
 | |
| 
 | |
|         if (!params.input_suffix.empty()) {
 | |
|             fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
 | |
|             params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
 | |
|     fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     // TODO: replace with ring-buffer
 | |
|     std::vector<llama_token> last_n_tokens(n_ctx);
 | |
|     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | |
| 
 | |
|     if (params.interactive) {
 | |
|         const char *control_message;
 | |
|         if (con_st.multiline_input) {
 | |
|             control_message = " - To return control to LLaMa, end your input with '\\'.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n";
 | |
|         } else {
 | |
|             control_message = " - Press Return to return control to LLaMa.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n"
 | |
|                               " - If you want to submit another line, end your input with '\\'.\n";
 | |
|         }
 | |
|         fprintf(stderr, "== Running in interactive mode. ==\n"
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
|                " - Press Ctrl+C to interject at any time.\n"
 | |
| #endif
 | |
|                "%s\n", control_message);
 | |
| 
 | |
|         is_interacting = params.interactive_first;
 | |
|     }
 | |
| 
 | |
|     bool is_antiprompt        = false;
 | |
|     bool input_echo           = true;
 | |
|     bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
 | |
| 
 | |
|     int n_past             = 0;
 | |
|     int n_remain           = params.n_predict;
 | |
|     int n_consumed         = 0;
 | |
|     int n_session_consumed = 0;
 | |
| 
 | |
|     // the first thing we will do is to output the prompt, so set color accordingly
 | |
|     console_set_color(con_st, CONSOLE_COLOR_PROMPT);
 | |
| 
 | |
|     std::vector<llama_token> embd;
 | |
| 
 | |
|     // do one empty run to warm up the model
 | |
|     {
 | |
|         const std::vector<llama_token> tmp = { llama_token_bos(), };
 | |
|         llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
 | |
|         llama_reset_timings(ctx);
 | |
|     }
 | |
| 
 | |
|     while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
 | |
|         // predict
 | |
|         if (embd.size() > 0) {
 | |
|             // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
 | |
|             // --prompt or --file which uses the same value.
 | |
|             auto max_embd_size = n_ctx - 4;
 | |
|             // Ensure the input doesn't exceed the context size by truncating embd if necessary.
 | |
|             if ((int)embd.size() > max_embd_size) {
 | |
|                 auto skipped_tokens = embd.size() - max_embd_size;
 | |
|                 console_set_color(con_st, CONSOLE_COLOR_ERROR);
 | |
|                 printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
 | |
|                 console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
 | |
|                 fflush(stdout);
 | |
|                 embd.resize(max_embd_size);
 | |
|             }
 | |
| 
 | |
|             // infinite text generation via context swapping
 | |
|             // if we run out of context:
 | |
|             // - take the n_keep first tokens from the original prompt (via n_past)
 | |
|             // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
 | |
|             if (n_past + (int) embd.size() > n_ctx) {
 | |
|                 const int n_left = n_past - params.n_keep;
 | |
| 
 | |
|                 // always keep the first token - BOS
 | |
|                 n_past = std::max(1, params.n_keep);
 | |
| 
 | |
|                 // insert n_left/2 tokens at the start of embd from last_n_tokens
 | |
|                 embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
 | |
| 
 | |
|                 // stop saving session if we run out of context
 | |
|                 path_session.clear();
 | |
| 
 | |
|                 //printf("\n---\n");
 | |
|                 //printf("resetting: '");
 | |
|                 //for (int i = 0; i < (int) embd.size(); i++) {
 | |
|                 //    printf("%s", llama_token_to_str(ctx, embd[i]));
 | |
|                 //}
 | |
|                 //printf("'\n");
 | |
|                 //printf("\n---\n");
 | |
|             }
 | |
| 
 | |
|             // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
 | |
|             if (n_session_consumed < (int) session_tokens.size()) {
 | |
|                 size_t i = 0;
 | |
|                 for ( ; i < embd.size(); i++) {
 | |
|                     if (embd[i] != session_tokens[n_session_consumed]) {
 | |
|                         session_tokens.resize(n_session_consumed);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     n_past++;
 | |
|                     n_session_consumed++;
 | |
| 
 | |
|                     if (n_session_consumed >= (int) session_tokens.size()) {
 | |
|                         ++i;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (i > 0) {
 | |
|                     embd.erase(embd.begin(), embd.begin() + i);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // evaluate tokens in batches
 | |
|             // embd is typically prepared beforehand to fit within a batch, but not always
 | |
|             for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
 | |
|                 int n_eval = (int) embd.size() - i;
 | |
|                 if (n_eval > params.n_batch) {
 | |
|                     n_eval = params.n_batch;
 | |
|                 }
 | |
|                 if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
 | |
|                     fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
|                 n_past += n_eval;
 | |
|             }
 | |
| 
 | |
|             if (embd.size() > 0 && !path_session.empty()) {
 | |
|                 session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
 | |
|                 n_session_consumed = session_tokens.size();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         embd.clear();
 | |
| 
 | |
|         if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
 | |
|             // out of user input, sample next token
 | |
|             const float   temp            = params.temp;
 | |
|             const int32_t top_k           = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
 | |
|             const float   top_p           = params.top_p;
 | |
|             const float   tfs_z           = params.tfs_z;
 | |
|             const float   typical_p       = params.typical_p;
 | |
|             const int32_t repeat_last_n   = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
 | |
|             const float   repeat_penalty  = params.repeat_penalty;
 | |
|             const float   alpha_presence  = params.presence_penalty;
 | |
|             const float   alpha_frequency = params.frequency_penalty;
 | |
|             const int     mirostat        = params.mirostat;
 | |
|             const float   mirostat_tau    = params.mirostat_tau;
 | |
|             const float   mirostat_eta    = params.mirostat_eta;
 | |
|             const bool    penalize_nl     = params.penalize_nl;
 | |
| 
 | |
|             // optionally save the session on first sample (for faster prompt loading next time)
 | |
|             if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
 | |
|                 need_to_save_session = false;
 | |
|                 llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | |
|             }
 | |
| 
 | |
|             llama_token id = 0;
 | |
| 
 | |
|             {
 | |
|                 auto logits  = llama_get_logits(ctx);
 | |
|                 auto n_vocab = llama_n_vocab(ctx);
 | |
| 
 | |
|                 // Apply params.logit_bias map
 | |
|                 for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
 | |
|                     logits[it->first] += it->second;
 | |
|                 }
 | |
| 
 | |
|                 std::vector<llama_token_data> candidates;
 | |
|                 candidates.reserve(n_vocab);
 | |
|                 for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|                     candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|                 }
 | |
| 
 | |
|                 llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|                 // Apply penalties
 | |
|                 float nl_logit = logits[llama_token_nl()];
 | |
|                 auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
 | |
|                 llama_sample_repetition_penalty(ctx, &candidates_p,
 | |
|                     last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|                     last_n_repeat, repeat_penalty);
 | |
|                 llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | |
|                     last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|                     last_n_repeat, alpha_frequency, alpha_presence);
 | |
|                 if (!penalize_nl) {
 | |
|                     logits[llama_token_nl()] = nl_logit;
 | |
|                 }
 | |
| 
 | |
|                 if (temp <= 0) {
 | |
|                     // Greedy sampling
 | |
|                     id = llama_sample_token_greedy(ctx, &candidates_p);
 | |
|                 } else {
 | |
|                     if (mirostat == 1) {
 | |
|                         static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                         const int mirostat_m = 100;
 | |
|                         llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                         id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | |
|                     } else if (mirostat == 2) {
 | |
|                         static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                         llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                         id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | |
|                     } else {
 | |
|                         // Temperature sampling
 | |
|                         llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | |
|                         llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
 | |
|                         llama_sample_typical(ctx, &candidates_p, typical_p, 1);
 | |
|                         llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | |
|                         llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                         id = llama_sample_token(ctx, &candidates_p);
 | |
|                     }
 | |
|                 }
 | |
|                 // printf("`%d`", candidates_p.size);
 | |
| 
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(id);
 | |
|             }
 | |
| 
 | |
|             // replace end of text token with newline token when in interactive mode
 | |
|             if (id == llama_token_eos() && params.interactive && !params.instruct) {
 | |
|                 id = llama_token_newline.front();
 | |
|                 if (params.antiprompt.size() != 0) {
 | |
|                     // tokenize and inject first reverse prompt
 | |
|                     const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
 | |
|                     embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // add it to the context
 | |
|             embd.push_back(id);
 | |
| 
 | |
|             // echo this to console
 | |
|             input_echo = true;
 | |
| 
 | |
|             // decrement remaining sampling budget
 | |
|             --n_remain;
 | |
|         } else {
 | |
|             // some user input remains from prompt or interaction, forward it to processing
 | |
|             while ((int) embd_inp.size() > n_consumed) {
 | |
|                 embd.push_back(embd_inp[n_consumed]);
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(embd_inp[n_consumed]);
 | |
|                 ++n_consumed;
 | |
|                 if ((int) embd.size() >= params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         if (input_echo) {
 | |
|             for (auto id : embd) {
 | |
|                 printf("%s", llama_token_to_str(ctx, id));
 | |
|             }
 | |
|             fflush(stdout);
 | |
|         }
 | |
|         // reset color to default if we there is no pending user input
 | |
|         if (input_echo && (int)embd_inp.size() == n_consumed) {
 | |
|             console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
 | |
|         }
 | |
| 
 | |
|         // if not currently processing queued inputs;
 | |
|         if ((int) embd_inp.size() <= n_consumed) {
 | |
| 
 | |
|             // check for reverse prompt
 | |
|             if (params.antiprompt.size()) {
 | |
|                 std::string last_output;
 | |
|                 for (auto id : last_n_tokens) {
 | |
|                     last_output += llama_token_to_str(ctx, id);
 | |
|                 }
 | |
| 
 | |
|                 is_antiprompt = false;
 | |
|                 // Check if each of the reverse prompts appears at the end of the output.
 | |
|                 // If we're not running interactively, the reverse prompt might be tokenized with some following characters
 | |
|                 // so we'll compensate for that by widening the search window a bit.
 | |
|                 for (std::string & antiprompt : params.antiprompt) {
 | |
|                     size_t extra_padding = params.interactive ? 0 : 2;
 | |
|                     size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
 | |
|                         ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
 | |
|                         : 0;
 | |
| 
 | |
|                     if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
 | |
|                         if (params.interactive) {
 | |
|                             is_interacting = true;
 | |
|                             console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
 | |
|                         }
 | |
|                         is_antiprompt = true;
 | |
|                         fflush(stdout);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0 && is_interacting) {
 | |
|                 if (params.instruct) {
 | |
|                     printf("\n> ");
 | |
|                 }
 | |
| 
 | |
|                 std::string buffer;
 | |
|                 if (!params.input_prefix.empty()) {
 | |
|                     buffer += params.input_prefix;
 | |
|                     printf("%s", buffer.c_str());
 | |
|                 }
 | |
| 
 | |
|                 std::string line;
 | |
|                 bool another_line = true;
 | |
|                 do {
 | |
|                     another_line = console_readline(con_st, line);
 | |
|                     buffer += line;
 | |
|                 } while (another_line);
 | |
| 
 | |
|                 // done taking input, reset color
 | |
|                 console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
 | |
| 
 | |
|                 // Add tokens to embd only if the input buffer is non-empty
 | |
|                 // Entering a empty line lets the user pass control back
 | |
|                 if (buffer.length() > 1) {
 | |
|                     // append input suffix if any
 | |
|                     if (!params.input_suffix.empty()) {
 | |
|                         buffer += params.input_suffix;
 | |
|                         printf("%s", params.input_suffix.c_str());
 | |
|                     }
 | |
| 
 | |
|                     // instruct mode: insert instruction prefix
 | |
|                     if (params.instruct && !is_antiprompt) {
 | |
|                         n_consumed = embd_inp.size();
 | |
|                         embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
 | |
|                     }
 | |
| 
 | |
|                     auto line_inp = ::llama_tokenize(ctx, buffer, false);
 | |
|                     embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | |
| 
 | |
|                     // instruct mode: insert response suffix
 | |
|                     if (params.instruct) {
 | |
|                         embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
 | |
|                     }
 | |
| 
 | |
|                     n_remain -= line_inp.size();
 | |
|                 }
 | |
| 
 | |
|                 input_echo = false; // do not echo this again
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0) {
 | |
|                 is_interacting = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // end of text token
 | |
|         if (!embd.empty() && embd.back() == llama_token_eos()) {
 | |
|             if (params.instruct) {
 | |
|                 is_interacting = true;
 | |
|             } else {
 | |
|                 fprintf(stderr, " [end of text]\n");
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 | |
|         if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
 | |
|             n_remain = params.n_predict;
 | |
|             is_interacting = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
 | |
|         fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
 | |
|         llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     return 0;
 | |
| }
 |