mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 b83cc3f5b3
			
		
	
	b83cc3f5b3
	
	
	
		
			
			* feat: first things to do * feat: create tensors for Jina architecture * fix: use other tensors * feat: embedding gets results * fix: fix usage of ALIBI * fix: clean prints * fix: do some cleanup unused vars * fix: revert changes to Makefile and CMakeLists * fix: revert some changes * fix: fix small detail * fix: fix convert formatting * fix: fix linting and editor * feat: set proper vocab settings * fix: JinaBertForMaskedLM registration * feat: support q_normalization and k_normalization in Jina arch * feat: handle gpt2 tokenizer with Jina architecture * feat: example comments in embedding * feat: rename Jina Bert to Jina Bert V2 * fix: add some changes as per review * feat: proper KQ_pos for Jina embeddings * feat: add capacity to load models ES and DE for Spanish * llama : fix pre-tokenizers * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * minor : clean-up * embedding : add warning about missing SEP --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | ||
| 
 | ||
| # This script downloads the tokenizer models of the specified models from Huggingface and
 | ||
| # generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
 | ||
| #
 | ||
| # This is necessary in order to analyze the type of pre-tokenizer used by the model and
 | ||
| # provide the necessary information to llama.cpp via the GGUF header in order to implement
 | ||
| # the same pre-tokenizer.
 | ||
| #
 | ||
| # ref: https://github.com/ggerganov/llama.cpp/pull/6920
 | ||
| #
 | ||
| # Instructions:
 | ||
| #
 | ||
| # - Add a new model to the "models" list
 | ||
| # - Run the script with your huggingface token:
 | ||
| #
 | ||
| #   python3 convert-hf-to-gguf-update.py <huggingface_token>
 | ||
| #
 | ||
| # - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
 | ||
| # - Update llama.cpp with the new pre-tokenizer if necessary
 | ||
| #
 | ||
| # TODO: generate tokenizer tests for llama.cpp
 | ||
| # TODO: automate the update of convert-hf-to-gguf.py
 | ||
| #
 | ||
| 
 | ||
| import logging
 | ||
| import os
 | ||
| import requests
 | ||
| import sys
 | ||
| import json
 | ||
| 
 | ||
| from hashlib import sha256
 | ||
| from enum import IntEnum, auto
 | ||
| from transformers import AutoTokenizer
 | ||
| 
 | ||
| logging.basicConfig(level=logging.DEBUG)
 | ||
| logger = logging.getLogger("convert-hf-to-gguf-update")
 | ||
| 
 | ||
| 
 | ||
| class TOKENIZER_TYPE(IntEnum):
 | ||
|     SPM = auto()
 | ||
|     BPE = auto()
 | ||
|     WPM = auto()
 | ||
| 
 | ||
| 
 | ||
| # TODO: this string has to exercise as much pre-tokenizer functionality as possible
 | ||
| #       will be updated with time - contributions welcome
 | ||
| chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
 | ||
| 
 | ||
| if len(sys.argv) == 2:
 | ||
|     token = sys.argv[1]
 | ||
|     if not token.startswith("hf_"):
 | ||
|         logger.info("Huggingface token seems invalid")
 | ||
|         logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
 | ||
|         sys.exit(1)
 | ||
| else:
 | ||
|     logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
 | ||
|     sys.exit(1)
 | ||
| 
 | ||
| # TODO: add models here, base models preferred
 | ||
| models = [
 | ||
|     {"name": "llama-spm",      "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
 | ||
|     {"name": "llama-bpe",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
 | ||
|     {"name": "phi-3",          "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
 | ||
|     {"name": "deepseek-llm",   "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
 | ||
|     {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
 | ||
|     {"name": "falcon",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
 | ||
|     {"name": "bert-bge",       "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
 | ||
|     {"name": "mpt",            "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
 | ||
|     {"name": "starcoder",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
 | ||
|     {"name": "gpt-2",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
 | ||
|     {"name": "refact",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
 | ||
|     {"name": "command-r",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
 | ||
|     {"name": "qwen2",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
 | ||
|     {"name": "olmo",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
 | ||
|     {"name": "dbrx",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
 | ||
|     {"name": "jina-en",        "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
 | ||
|     {"name": "jina-es",        "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
 | ||
|     {"name": "jina-de",        "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
 | ||
| ]
 | ||
| 
 | ||
| # make directory "models/tokenizers" if it doesn't exist
 | ||
| if not os.path.exists("models/tokenizers"):
 | ||
|     os.makedirs("models/tokenizers")
 | ||
| 
 | ||
| 
 | ||
| def download_file_with_auth(url, token, save_path):
 | ||
|     headers = {"Authorization": f"Bearer {token}"}
 | ||
|     response = requests.get(url, headers=headers)
 | ||
|     if response.status_code == 200:
 | ||
|         with open(save_path, 'wb') as f:
 | ||
|             f.write(response.content)
 | ||
|         logger.info(f"File {save_path} downloaded successfully")
 | ||
|     else:
 | ||
|         logger.info(f"Failed to download file. Status code: {response.status_code}")
 | ||
| 
 | ||
| 
 | ||
| # download the tokenizer models
 | ||
| for model in models:
 | ||
|     name = model["name"]
 | ||
|     repo = model["repo"]
 | ||
|     tokt = model["tokt"]
 | ||
| 
 | ||
|     if not os.path.exists(f"models/tokenizers/{name}"):
 | ||
|         os.makedirs(f"models/tokenizers/{name}")
 | ||
|     else:
 | ||
|         logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
 | ||
|         continue
 | ||
| 
 | ||
|     logger.info(f"Downloading {name} to models/tokenizers/{name}")
 | ||
| 
 | ||
|     url = f"{repo}/raw/main/config.json"
 | ||
|     save_path = f"models/tokenizers/{name}/config.json"
 | ||
|     download_file_with_auth(url, token, save_path)
 | ||
| 
 | ||
|     url = f"{repo}/raw/main/tokenizer.json"
 | ||
|     save_path = f"models/tokenizers/{name}/tokenizer.json"
 | ||
|     download_file_with_auth(url, token, save_path)
 | ||
| 
 | ||
|     # if downloaded file is less than 1KB, we likely need to download an LFS instead
 | ||
|     if os.path.getsize(save_path) < 1024:
 | ||
|         # remove the file
 | ||
|         os.remove(save_path)
 | ||
|         url = f"{repo}/resolve/main/tokenizer.json"
 | ||
|         save_path = f"models/tokenizers/{name}/tokenizer.json"
 | ||
|         download_file_with_auth(url, token, save_path)
 | ||
| 
 | ||
|     if tokt == TOKENIZER_TYPE.SPM:
 | ||
|         url = f"{repo}/resolve/main/tokenizer.model"
 | ||
|         save_path = f"models/tokenizers/{name}/tokenizer.model"
 | ||
|         download_file_with_auth(url, token, save_path)
 | ||
| 
 | ||
|     url = f"{repo}/raw/main/tokenizer_config.json"
 | ||
|     save_path = f"models/tokenizers/{name}/tokenizer_config.json"
 | ||
|     download_file_with_auth(url, token, save_path)
 | ||
| 
 | ||
| # generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
 | ||
| # TODO: auto-update convert-hf-to-gguf.py with the generated function
 | ||
| 
 | ||
| src_ifs = ""
 | ||
| for model in models:
 | ||
|     name = model["name"]
 | ||
|     tokt = model["tokt"]
 | ||
| 
 | ||
|     if tokt == TOKENIZER_TYPE.SPM:
 | ||
|         continue
 | ||
| 
 | ||
|     # create the tokenizer
 | ||
|     tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | ||
| 
 | ||
|     chktok = tokenizer.encode(chktxt)
 | ||
|     chkhsh = sha256(str(chktok).encode()).hexdigest()
 | ||
| 
 | ||
|     logger.info(f"model: {name}")
 | ||
|     logger.info(f"tokt: {tokt}")
 | ||
|     logger.info(f"repo: {model['repo']}")
 | ||
|     logger.info(f"chktok: {chktok}")
 | ||
|     logger.info(f"chkhsh: {chkhsh}")
 | ||
| 
 | ||
|     # print the "pre_tokenizer" content from the tokenizer.json
 | ||
|     with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
 | ||
|         cfg = json.load(f)
 | ||
|         normalizer = cfg["normalizer"]
 | ||
|         logger.info("normalizer: " + json.dumps(normalizer, indent=4))
 | ||
|         pre_tokenizer = cfg["pre_tokenizer"]
 | ||
|         logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
 | ||
|         if "ignore_merges" in cfg["model"]:
 | ||
|             logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
 | ||
| 
 | ||
|     logger.info("")
 | ||
| 
 | ||
|     src_ifs += f"        if chkhsh == \"{chkhsh}\":\n"
 | ||
|     src_ifs += f"            # ref: {model['repo']}\n"
 | ||
|     src_ifs += f"            res = \"{name}\"\n"
 | ||
| 
 | ||
| src_func = f"""
 | ||
|     def get_vocab_base_pre(self, tokenizer) -> str:
 | ||
|         # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
 | ||
|         # is specific for the BPE pre-tokenizer used by the model
 | ||
|         # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
 | ||
|         # use in llama.cpp to implement the same pre-tokenizer
 | ||
| 
 | ||
|         chktxt = {repr(chktxt)}
 | ||
| 
 | ||
|         chktok = tokenizer.encode(chktxt)
 | ||
|         chkhsh = sha256(str(chktok).encode()).hexdigest()
 | ||
| 
 | ||
|         logger.debug(f"chktok: {{chktok}}")
 | ||
|         logger.debug(f"chkhsh: {{chkhsh}}")
 | ||
| 
 | ||
|         res = None
 | ||
| 
 | ||
|         # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
 | ||
|         #       or pull the latest version of the model from Huggingface
 | ||
|         #       don't edit the hashes manually!
 | ||
| {src_ifs}
 | ||
|         if res is None:
 | ||
|             logger.warning("\\n")
 | ||
|             logger.warning("**************************************************************************************")
 | ||
|             logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
 | ||
|             logger.warning("**          There are 2 possible reasons for this:")
 | ||
|             logger.warning("**          - the model has not been added to convert-hf-to-gguf-update.py yet")
 | ||
|             logger.warning("**          - the pre-tokenization config has changed upstream")
 | ||
|             logger.warning("**          Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
 | ||
|             logger.warning("** ref:     https://github.com/ggerganov/llama.cpp/pull/6920")
 | ||
|             logger.warning("**")
 | ||
|             logger.warning(f"** chkhsh:  {{chkhsh}}")
 | ||
|             logger.warning("**************************************************************************************")
 | ||
|             logger.warning("\\n")
 | ||
|             raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
 | ||
| 
 | ||
|         logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}")
 | ||
|         logger.debug(f"chkhsh: {{chkhsh}}")
 | ||
| 
 | ||
|         return res
 | ||
| """
 | ||
| 
 | ||
| print(src_func) # noqa: NP100
 | ||
| 
 | ||
| logger.info("\n")
 | ||
| logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
 | ||
| logger.info("\n")
 | ||
| 
 | ||
| # generate tests for each tokenizer model
 | ||
| 
 | ||
| tests = [
 | ||
|     "ied 4 ½ months",
 | ||
|     "Führer",
 | ||
|     "",
 | ||
|     " ",
 | ||
|     "  ",
 | ||
|     "   ",
 | ||
|     "\t",
 | ||
|     "\n",
 | ||
|     "\n\n",
 | ||
|     "\n\n\n",
 | ||
|     "\t\n",
 | ||
|     "Hello world",
 | ||
|     " Hello world",
 | ||
|     "Hello World",
 | ||
|     " Hello World",
 | ||
|     " Hello World!",
 | ||
|     "Hello, world!",
 | ||
|     " Hello, world!",
 | ||
|     " this is 🦙.cpp",
 | ||
|     "w048 7tuijk dsdfhu",
 | ||
|     "нещо на Български",
 | ||
|     "កាន់តែពិសេសអាចខលចេញ",
 | ||
|     "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
 | ||
|     "Hello",
 | ||
|     " Hello",
 | ||
|     "  Hello",
 | ||
|     "   Hello",
 | ||
|     "    Hello",
 | ||
|     "    Hello\n    Hello",
 | ||
|     " (",
 | ||
|     "\n =",
 | ||
|     "' era",
 | ||
|     "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
 | ||
|     "3",
 | ||
|     "33",
 | ||
|     "333",
 | ||
|     "3333",
 | ||
|     "33333",
 | ||
|     "333333",
 | ||
|     "3333333",
 | ||
|     "33333333",
 | ||
|     "333333333",
 | ||
|     # "Cửa Việt", # llama-bpe fails on this
 | ||
|     chktxt,
 | ||
| ]
 | ||
| 
 | ||
| # write the tests to ./models/ggml-vocab-{name}.gguf.inp
 | ||
| # the format is:
 | ||
| #
 | ||
| # test0
 | ||
| # __ggml_vocab_test__
 | ||
| # test1
 | ||
| # __ggml_vocab_test__
 | ||
| # ...
 | ||
| #
 | ||
| 
 | ||
| # with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
 | ||
| # for each test, write the resulting tokens on a separate line
 | ||
| 
 | ||
| for model in models:
 | ||
|     name = model["name"]
 | ||
|     tokt = model["tokt"]
 | ||
| 
 | ||
|     # create the tokenizer
 | ||
|     tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | ||
| 
 | ||
|     with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
 | ||
|         for text in tests:
 | ||
|             f.write(f"{text}")
 | ||
|             f.write("\n__ggml_vocab_test__\n")
 | ||
| 
 | ||
|     with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
 | ||
|         for text in tests:
 | ||
|             res = tokenizer.encode(text, add_special_tokens=False)
 | ||
|             for r in res:
 | ||
|                 f.write(f" {r}")
 | ||
|             f.write("\n")
 | ||
| 
 | ||
|     logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
 | ||
| 
 | ||
| # generate commands for creating vocab files
 | ||
| 
 | ||
| logger.info("\nRun the following commands to generate the vocab files for testing:\n")
 | ||
| 
 | ||
| for model in models:
 | ||
|     name = model["name"]
 | ||
| 
 | ||
|     print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
 | ||
| 
 | ||
| logger.info("\n")
 |