mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* convert-hf : support bfloat16 conversion * gguf-py : flake8 fixes * convert-hf : add missing space after comma * convert-hf : get bit-exact same output as ./quantize The quantization version was missing. * convert-hf : don't round bf16 NANs * convert-hf : save some memory with np.int16 intermediate bf16 weights * convert-hf : more closely match llama.cpp with which weights to keep in f32 * convert-hf : add --outtype auto-f16 A reason for this to exist is for model quantizers who want an initial GGUF with the most fidelity to the original model while still using a 16-bit float type instead of 32-bit floats. * convert-hf : remove a semicolon because flake8 doesn't like it It's a reflex from when programming in C/C++, I guess. * convert-hf : support outtype templating in outfile name * convert-hf : rename --outtype auto-f16 to --outtype auto
		
			
				
	
	
		
			1024 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1024 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
from enum import Enum, IntEnum, auto
 | 
						|
from typing import Any
 | 
						|
 | 
						|
#
 | 
						|
# constants
 | 
						|
#
 | 
						|
 | 
						|
GGUF_MAGIC             = 0x46554747  # "GGUF"
 | 
						|
GGUF_VERSION           = 3
 | 
						|
GGUF_DEFAULT_ALIGNMENT = 32
 | 
						|
GGML_QUANT_VERSION     = 2  # GGML_QNT_VERSION from ggml.h
 | 
						|
 | 
						|
#
 | 
						|
# metadata keys
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class Keys:
 | 
						|
    class General:
 | 
						|
        ARCHITECTURE         = "general.architecture"
 | 
						|
        QUANTIZATION_VERSION = "general.quantization_version"
 | 
						|
        ALIGNMENT            = "general.alignment"
 | 
						|
        NAME                 = "general.name"
 | 
						|
        AUTHOR               = "general.author"
 | 
						|
        VERSION              = "general.version"
 | 
						|
        URL                  = "general.url"
 | 
						|
        DESCRIPTION          = "general.description"
 | 
						|
        LICENSE              = "general.license"
 | 
						|
        SOURCE_URL           = "general.source.url"
 | 
						|
        SOURCE_HF_REPO       = "general.source.huggingface.repository"
 | 
						|
        FILE_TYPE            = "general.file_type"
 | 
						|
 | 
						|
    class LLM:
 | 
						|
        VOCAB_SIZE            = "{arch}.vocab_size"
 | 
						|
        CONTEXT_LENGTH        = "{arch}.context_length"
 | 
						|
        EMBEDDING_LENGTH      = "{arch}.embedding_length"
 | 
						|
        BLOCK_COUNT           = "{arch}.block_count"
 | 
						|
        FEED_FORWARD_LENGTH   = "{arch}.feed_forward_length"
 | 
						|
        USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
 | 
						|
        TENSOR_DATA_LAYOUT    = "{arch}.tensor_data_layout"
 | 
						|
        EXPERT_COUNT          = "{arch}.expert_count"
 | 
						|
        EXPERT_USED_COUNT     = "{arch}.expert_used_count"
 | 
						|
        POOLING_TYPE          = "{arch}.pooling_type"
 | 
						|
        LOGIT_SCALE           = "{arch}.logit_scale"
 | 
						|
 | 
						|
    class Attention:
 | 
						|
        HEAD_COUNT        = "{arch}.attention.head_count"
 | 
						|
        HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | 
						|
        MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | 
						|
        CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | 
						|
        KEY_LENGTH        = "{arch}.attention.key_length"
 | 
						|
        VALUE_LENGTH      = "{arch}.attention.value_length"
 | 
						|
        LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | 
						|
        LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | 
						|
        CAUSAL            = "{arch}.attention.causal"
 | 
						|
 | 
						|
    class Rope:
 | 
						|
        DIMENSION_COUNT      = "{arch}.rope.dimension_count"
 | 
						|
        FREQ_BASE            = "{arch}.rope.freq_base"
 | 
						|
        SCALING_TYPE         = "{arch}.rope.scaling.type"
 | 
						|
        SCALING_FACTOR       = "{arch}.rope.scaling.factor"
 | 
						|
        SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
 | 
						|
        SCALING_FINETUNED    = "{arch}.rope.scaling.finetuned"
 | 
						|
 | 
						|
    class SSM:
 | 
						|
        CONV_KERNEL    = "{arch}.ssm.conv_kernel"
 | 
						|
        INNER_SIZE     = "{arch}.ssm.inner_size"
 | 
						|
        STATE_SIZE     = "{arch}.ssm.state_size"
 | 
						|
        TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
 | 
						|
 | 
						|
    class Tokenizer:
 | 
						|
        MODEL            = "tokenizer.ggml.model"
 | 
						|
        PRE              = "tokenizer.ggml.pre"
 | 
						|
        LIST             = "tokenizer.ggml.tokens"
 | 
						|
        TOKEN_TYPE       = "tokenizer.ggml.token_type"
 | 
						|
        TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count"  # for BERT-style token types
 | 
						|
        SCORES           = "tokenizer.ggml.scores"
 | 
						|
        MERGES           = "tokenizer.ggml.merges"
 | 
						|
        BOS_ID           = "tokenizer.ggml.bos_token_id"
 | 
						|
        EOS_ID           = "tokenizer.ggml.eos_token_id"
 | 
						|
        UNK_ID           = "tokenizer.ggml.unknown_token_id"
 | 
						|
        SEP_ID           = "tokenizer.ggml.seperator_token_id"
 | 
						|
        PAD_ID           = "tokenizer.ggml.padding_token_id"
 | 
						|
        CLS_ID           = "tokenizer.ggml.cls_token_id"
 | 
						|
        MASK_ID          = "tokenizer.ggml.mask_token_id"
 | 
						|
        ADD_BOS          = "tokenizer.ggml.add_bos_token"
 | 
						|
        ADD_EOS          = "tokenizer.ggml.add_eos_token"
 | 
						|
        ADD_PREFIX       = "tokenizer.ggml.add_space_prefix"
 | 
						|
        HF_JSON          = "tokenizer.huggingface.json"
 | 
						|
        RWKV             = "tokenizer.rwkv.world"
 | 
						|
        CHAT_TEMPLATE    = "tokenizer.chat_template"
 | 
						|
        CHAT_TEMPLATE_N  = "tokenizer.chat_template.{name}"
 | 
						|
        CHAT_TEMPLATES   = "tokenizer.chat_templates"
 | 
						|
        # FIM/Infill special tokens constants
 | 
						|
        PREFIX_ID        = "tokenizer.ggml.prefix_token_id"
 | 
						|
        SUFFIX_ID        = "tokenizer.ggml.suffix_token_id"
 | 
						|
        MIDDLE_ID        = "tokenizer.ggml.middle_token_id"
 | 
						|
        EOT_ID           = "tokenizer.ggml.eot_token_id"
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# recommended mapping of model tensor names for storage in gguf
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class MODEL_ARCH(IntEnum):
 | 
						|
    LLAMA      = auto()
 | 
						|
    FALCON     = auto()
 | 
						|
    BAICHUAN   = auto()
 | 
						|
    GROK       = auto()
 | 
						|
    GPT2       = auto()
 | 
						|
    GPTJ       = auto()
 | 
						|
    GPTNEOX    = auto()
 | 
						|
    MPT        = auto()
 | 
						|
    STARCODER  = auto()
 | 
						|
    PERSIMMON  = auto()
 | 
						|
    REFACT     = auto()
 | 
						|
    BERT       = auto()
 | 
						|
    NOMIC_BERT = auto()
 | 
						|
    JINA_BERT_V2 = auto()
 | 
						|
    BLOOM      = auto()
 | 
						|
    STABLELM   = auto()
 | 
						|
    QWEN       = auto()
 | 
						|
    QWEN2      = auto()
 | 
						|
    QWEN2MOE   = auto()
 | 
						|
    PHI2       = auto()
 | 
						|
    PHI3       = auto()
 | 
						|
    PLAMO      = auto()
 | 
						|
    CODESHELL  = auto()
 | 
						|
    ORION      = auto()
 | 
						|
    INTERNLM2  = auto()
 | 
						|
    MINICPM    = auto()
 | 
						|
    GEMMA      = auto()
 | 
						|
    STARCODER2 = auto()
 | 
						|
    MAMBA      = auto()
 | 
						|
    XVERSE     = auto()
 | 
						|
    COMMAND_R  = auto()
 | 
						|
    DBRX       = auto()
 | 
						|
    OLMO       = auto()
 | 
						|
 | 
						|
 | 
						|
class MODEL_TENSOR(IntEnum):
 | 
						|
    TOKEN_EMBD         = auto()
 | 
						|
    TOKEN_EMBD_NORM    = auto()
 | 
						|
    TOKEN_TYPES        = auto()
 | 
						|
    POS_EMBD           = auto()
 | 
						|
    OUTPUT             = auto()
 | 
						|
    OUTPUT_NORM        = auto()
 | 
						|
    ROPE_FREQS         = auto()
 | 
						|
    ATTN_Q             = auto()
 | 
						|
    ATTN_K             = auto()
 | 
						|
    ATTN_V             = auto()
 | 
						|
    ATTN_QKV           = auto()
 | 
						|
    ATTN_OUT           = auto()
 | 
						|
    ATTN_NORM          = auto()
 | 
						|
    ATTN_NORM_2        = auto()
 | 
						|
    ATTN_OUT_NORM      = auto()
 | 
						|
    ATTN_ROT_EMBD      = auto()
 | 
						|
    FFN_GATE_INP       = auto()
 | 
						|
    FFN_GATE_INP_SHEXP = auto()
 | 
						|
    FFN_NORM           = auto()
 | 
						|
    FFN_GATE           = auto()
 | 
						|
    FFN_DOWN           = auto()
 | 
						|
    FFN_UP             = auto()
 | 
						|
    FFN_ACT            = auto()
 | 
						|
    FFN_GATE_EXP       = auto()
 | 
						|
    FFN_DOWN_EXP       = auto()
 | 
						|
    FFN_UP_EXP         = auto()
 | 
						|
    FFN_GATE_SHEXP     = auto()
 | 
						|
    FFN_DOWN_SHEXP     = auto()
 | 
						|
    FFN_UP_SHEXP       = auto()
 | 
						|
    ATTN_Q_NORM        = auto()
 | 
						|
    ATTN_K_NORM        = auto()
 | 
						|
    LAYER_OUT_NORM     = auto()
 | 
						|
    SSM_IN             = auto()
 | 
						|
    SSM_CONV1D         = auto()
 | 
						|
    SSM_X              = auto()
 | 
						|
    SSM_DT             = auto()
 | 
						|
    SSM_A              = auto()
 | 
						|
    SSM_D              = auto()
 | 
						|
    SSM_OUT            = auto()
 | 
						|
 | 
						|
 | 
						|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
 | 
						|
    MODEL_ARCH.LLAMA:          "llama",
 | 
						|
    MODEL_ARCH.FALCON:         "falcon",
 | 
						|
    MODEL_ARCH.BAICHUAN:       "baichuan",
 | 
						|
    MODEL_ARCH.GROK:           "grok",
 | 
						|
    MODEL_ARCH.GPT2:           "gpt2",
 | 
						|
    MODEL_ARCH.GPTJ:           "gptj",
 | 
						|
    MODEL_ARCH.GPTNEOX:        "gptneox",
 | 
						|
    MODEL_ARCH.MPT:            "mpt",
 | 
						|
    MODEL_ARCH.STARCODER:      "starcoder",
 | 
						|
    MODEL_ARCH.PERSIMMON:      "persimmon",
 | 
						|
    MODEL_ARCH.REFACT:         "refact",
 | 
						|
    MODEL_ARCH.BERT:           "bert",
 | 
						|
    MODEL_ARCH.NOMIC_BERT:     "nomic-bert",
 | 
						|
    MODEL_ARCH.JINA_BERT_V2:   "jina-bert-v2",
 | 
						|
    MODEL_ARCH.BLOOM:          "bloom",
 | 
						|
    MODEL_ARCH.STABLELM:       "stablelm",
 | 
						|
    MODEL_ARCH.QWEN:           "qwen",
 | 
						|
    MODEL_ARCH.QWEN2:          "qwen2",
 | 
						|
    MODEL_ARCH.QWEN2MOE:       "qwen2moe",
 | 
						|
    MODEL_ARCH.PHI2:           "phi2",
 | 
						|
    MODEL_ARCH.PHI3:           "phi3",
 | 
						|
    MODEL_ARCH.PLAMO:          "plamo",
 | 
						|
    MODEL_ARCH.CODESHELL:      "codeshell",
 | 
						|
    MODEL_ARCH.ORION:          "orion",
 | 
						|
    MODEL_ARCH.INTERNLM2:      "internlm2",
 | 
						|
    MODEL_ARCH.MINICPM:        "minicpm",
 | 
						|
    MODEL_ARCH.GEMMA:          "gemma",
 | 
						|
    MODEL_ARCH.STARCODER2:     "starcoder2",
 | 
						|
    MODEL_ARCH.MAMBA:          "mamba",
 | 
						|
    MODEL_ARCH.XVERSE:         "xverse",
 | 
						|
    MODEL_ARCH.COMMAND_R:      "command-r",
 | 
						|
    MODEL_ARCH.DBRX:           "dbrx",
 | 
						|
    MODEL_ARCH.OLMO:           "olmo",
 | 
						|
}
 | 
						|
 | 
						|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD:         "token_embd",
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD_NORM:    "token_embd_norm",
 | 
						|
    MODEL_TENSOR.TOKEN_TYPES:        "token_types",
 | 
						|
    MODEL_TENSOR.POS_EMBD:           "position_embd",
 | 
						|
    MODEL_TENSOR.OUTPUT_NORM:        "output_norm",
 | 
						|
    MODEL_TENSOR.OUTPUT:             "output",
 | 
						|
    MODEL_TENSOR.ROPE_FREQS:         "rope_freqs",
 | 
						|
    MODEL_TENSOR.ATTN_NORM:          "blk.{bid}.attn_norm",
 | 
						|
    MODEL_TENSOR.ATTN_NORM_2:        "blk.{bid}.attn_norm_2",
 | 
						|
    MODEL_TENSOR.ATTN_QKV:           "blk.{bid}.attn_qkv",
 | 
						|
    MODEL_TENSOR.ATTN_Q:             "blk.{bid}.attn_q",
 | 
						|
    MODEL_TENSOR.ATTN_K:             "blk.{bid}.attn_k",
 | 
						|
    MODEL_TENSOR.ATTN_V:             "blk.{bid}.attn_v",
 | 
						|
    MODEL_TENSOR.ATTN_OUT:           "blk.{bid}.attn_output",
 | 
						|
    MODEL_TENSOR.ATTN_ROT_EMBD:      "blk.{bid}.attn_rot_embd",
 | 
						|
    MODEL_TENSOR.ATTN_Q_NORM:        "blk.{bid}.attn_q_norm",
 | 
						|
    MODEL_TENSOR.ATTN_K_NORM:        "blk.{bid}.attn_k_norm",
 | 
						|
    MODEL_TENSOR.ATTN_OUT_NORM:      "blk.{bid}.attn_output_norm",
 | 
						|
    MODEL_TENSOR.FFN_GATE_INP:       "blk.{bid}.ffn_gate_inp",
 | 
						|
    MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
 | 
						|
    MODEL_TENSOR.FFN_NORM:           "blk.{bid}.ffn_norm",
 | 
						|
    MODEL_TENSOR.FFN_GATE:           "blk.{bid}.ffn_gate",
 | 
						|
    MODEL_TENSOR.FFN_DOWN:           "blk.{bid}.ffn_down",
 | 
						|
    MODEL_TENSOR.FFN_UP:             "blk.{bid}.ffn_up",
 | 
						|
    MODEL_TENSOR.FFN_GATE_SHEXP:     "blk.{bid}.ffn_gate_shexp",
 | 
						|
    MODEL_TENSOR.FFN_DOWN_SHEXP:     "blk.{bid}.ffn_down_shexp",
 | 
						|
    MODEL_TENSOR.FFN_UP_SHEXP:       "blk.{bid}.ffn_up_shexp",
 | 
						|
    MODEL_TENSOR.FFN_ACT:            "blk.{bid}.ffn",
 | 
						|
    MODEL_TENSOR.FFN_GATE_EXP:       "blk.{bid}.ffn_gate_exps",
 | 
						|
    MODEL_TENSOR.FFN_DOWN_EXP:       "blk.{bid}.ffn_down_exps",
 | 
						|
    MODEL_TENSOR.FFN_UP_EXP:         "blk.{bid}.ffn_up_exps",
 | 
						|
    MODEL_TENSOR.LAYER_OUT_NORM:     "blk.{bid}.layer_output_norm",
 | 
						|
    MODEL_TENSOR.SSM_IN:             "blk.{bid}.ssm_in",
 | 
						|
    MODEL_TENSOR.SSM_CONV1D:         "blk.{bid}.ssm_conv1d",
 | 
						|
    MODEL_TENSOR.SSM_X:              "blk.{bid}.ssm_x",
 | 
						|
    MODEL_TENSOR.SSM_DT:             "blk.{bid}.ssm_dt",
 | 
						|
    MODEL_TENSOR.SSM_A:              "blk.{bid}.ssm_a",
 | 
						|
    MODEL_TENSOR.SSM_D:              "blk.{bid}.ssm_d",
 | 
						|
    MODEL_TENSOR.SSM_OUT:            "blk.{bid}.ssm_out",
 | 
						|
}
 | 
						|
 | 
						|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GROK: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.ATTN_OUT_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
        MODEL_TENSOR.LAYER_OUT_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTNEOX: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.FALCON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM_2,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STARCODER: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BERT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_OUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.LAYER_OUT_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.NOMIC_BERT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_OUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.LAYER_OUT_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.JINA_BERT_V2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES,
 | 
						|
        MODEL_TENSOR.ATTN_OUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.LAYER_OUT_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.MPT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_ACT,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTJ: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.REFACT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BLOOM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STABLELM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN2MOE: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP_SHEXP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_SHEXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_SHEXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_SHEXP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PLAMO: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPT2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PHI2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PHI3: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.CODESHELL: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.ORION: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.INTERNLM2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.MINICPM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GEMMA: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STARCODER2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.MAMBA: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.SSM_IN,
 | 
						|
        MODEL_TENSOR.SSM_CONV1D,
 | 
						|
        MODEL_TENSOR.SSM_X,
 | 
						|
        MODEL_TENSOR.SSM_DT,
 | 
						|
        MODEL_TENSOR.SSM_A,
 | 
						|
        MODEL_TENSOR.SSM_D,
 | 
						|
        MODEL_TENSOR.SSM_OUT,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.XVERSE: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.COMMAND_R: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.DBRX: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_OUT_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.OLMO: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    # TODO
 | 
						|
}
 | 
						|
 | 
						|
# tensors that will not be serialized
 | 
						|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.CODESHELL: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.ORION: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STARCODER2: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.XVERSE: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
}
 | 
						|
 | 
						|
#
 | 
						|
# types
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class TokenType(IntEnum):
 | 
						|
    NORMAL       = 1
 | 
						|
    UNKNOWN      = 2
 | 
						|
    CONTROL      = 3
 | 
						|
    USER_DEFINED = 4
 | 
						|
    UNUSED       = 5
 | 
						|
    BYTE         = 6
 | 
						|
 | 
						|
 | 
						|
class RopeScalingType(Enum):
 | 
						|
    NONE   = 'none'
 | 
						|
    LINEAR = 'linear'
 | 
						|
    YARN   = 'yarn'
 | 
						|
 | 
						|
 | 
						|
class PoolingType(IntEnum):
 | 
						|
    NONE = 0
 | 
						|
    MEAN = 1
 | 
						|
    CLS  = 2
 | 
						|
 | 
						|
 | 
						|
class GGMLQuantizationType(IntEnum):
 | 
						|
    F32     = 0
 | 
						|
    F16     = 1
 | 
						|
    Q4_0    = 2
 | 
						|
    Q4_1    = 3
 | 
						|
    Q5_0    = 6
 | 
						|
    Q5_1    = 7
 | 
						|
    Q8_0    = 8
 | 
						|
    Q8_1    = 9
 | 
						|
    Q2_K    = 10
 | 
						|
    Q3_K    = 11
 | 
						|
    Q4_K    = 12
 | 
						|
    Q5_K    = 13
 | 
						|
    Q6_K    = 14
 | 
						|
    Q8_K    = 15
 | 
						|
    IQ2_XXS = 16
 | 
						|
    IQ2_XS  = 17
 | 
						|
    IQ3_XXS = 18
 | 
						|
    IQ1_S   = 19
 | 
						|
    IQ4_NL  = 20
 | 
						|
    IQ3_S   = 21
 | 
						|
    IQ2_S   = 22
 | 
						|
    IQ4_XS  = 23
 | 
						|
    I8      = 24
 | 
						|
    I16     = 25
 | 
						|
    I32     = 26
 | 
						|
    I64     = 27
 | 
						|
    F64     = 28
 | 
						|
    IQ1_M   = 29
 | 
						|
    BF16    = 30
 | 
						|
 | 
						|
 | 
						|
# TODO: add GGMLFileType from ggml_ftype in ggml.h
 | 
						|
 | 
						|
 | 
						|
# from llama_ftype in llama.h
 | 
						|
# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
 | 
						|
class LlamaFileType(IntEnum):
 | 
						|
    ALL_F32              = 0
 | 
						|
    MOSTLY_F16           = 1   # except 1d tensors
 | 
						|
    MOSTLY_Q4_0          = 2   # except 1d tensors
 | 
						|
    MOSTLY_Q4_1          = 3   # except 1d tensors
 | 
						|
    MOSTLY_Q4_1_SOME_F16 = 4   # tok_embeddings.weight and output.weight are F16
 | 
						|
    # MOSTLY_Q4_2        = 5   # support has been removed
 | 
						|
    # MOSTLY_Q4_3        = 6   # support has been removed
 | 
						|
    MOSTLY_Q8_0          = 7   # except 1d tensors
 | 
						|
    MOSTLY_Q5_0          = 8   # except 1d tensors
 | 
						|
    MOSTLY_Q5_1          = 9   # except 1d tensors
 | 
						|
    MOSTLY_Q2_K          = 10  # except 1d tensors
 | 
						|
    MOSTLY_Q3_K_S        = 11  # except 1d tensors
 | 
						|
    MOSTLY_Q3_K_M        = 12  # except 1d tensors
 | 
						|
    MOSTLY_Q3_K_L        = 13  # except 1d tensors
 | 
						|
    MOSTLY_Q4_K_S        = 14  # except 1d tensors
 | 
						|
    MOSTLY_Q4_K_M        = 15  # except 1d tensors
 | 
						|
    MOSTLY_Q5_K_S        = 16  # except 1d tensors
 | 
						|
    MOSTLY_Q5_K_M        = 17  # except 1d tensors
 | 
						|
    MOSTLY_Q6_K          = 18  # except 1d tensors
 | 
						|
    MOSTLY_IQ2_XXS       = 19  # except 1d tensors
 | 
						|
    MOSTLY_IQ2_XS        = 20  # except 1d tensors
 | 
						|
    MOSTLY_Q2_K_S        = 21  # except 1d tensors
 | 
						|
    MOSTLY_IQ3_XS        = 22  # except 1d tensors
 | 
						|
    MOSTLY_IQ3_XXS       = 23  # except 1d tensors
 | 
						|
    MOSTLY_IQ1_S         = 24  # except 1d tensors
 | 
						|
    MOSTLY_IQ4_NL        = 25  # except 1d tensors
 | 
						|
    MOSTLY_IQ3_S         = 26  # except 1d tensors
 | 
						|
    MOSTLY_IQ3_M         = 27  # except 1d tensors
 | 
						|
    MOSTLY_IQ2_S         = 28  # except 1d tensors
 | 
						|
    MOSTLY_IQ2_M         = 29  # except 1d tensors
 | 
						|
    MOSTLY_IQ4_XS        = 30  # except 1d tensors
 | 
						|
    MOSTLY_IQ1_M         = 31  # except 1d tensors
 | 
						|
    MOSTLY_BF16          = 32  # except 1d tensors
 | 
						|
 | 
						|
    GUESSED              = 1024  # not specified in the model file
 | 
						|
 | 
						|
 | 
						|
class GGUFEndian(IntEnum):
 | 
						|
    LITTLE = 0
 | 
						|
    BIG = 1
 | 
						|
 | 
						|
 | 
						|
class GGUFValueType(IntEnum):
 | 
						|
    UINT8   = 0
 | 
						|
    INT8    = 1
 | 
						|
    UINT16  = 2
 | 
						|
    INT16   = 3
 | 
						|
    UINT32  = 4
 | 
						|
    INT32   = 5
 | 
						|
    FLOAT32 = 6
 | 
						|
    BOOL    = 7
 | 
						|
    STRING  = 8
 | 
						|
    ARRAY   = 9
 | 
						|
    UINT64  = 10
 | 
						|
    INT64   = 11
 | 
						|
    FLOAT64 = 12
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_type(val: Any) -> GGUFValueType:
 | 
						|
        if isinstance(val, (str, bytes, bytearray)):
 | 
						|
            return GGUFValueType.STRING
 | 
						|
        elif isinstance(val, list):
 | 
						|
            return GGUFValueType.ARRAY
 | 
						|
        elif isinstance(val, float):
 | 
						|
            return GGUFValueType.FLOAT32
 | 
						|
        elif isinstance(val, bool):
 | 
						|
            return GGUFValueType.BOOL
 | 
						|
        elif isinstance(val, int):
 | 
						|
            return GGUFValueType.INT32
 | 
						|
        # TODO: need help with 64-bit types in Python
 | 
						|
        else:
 | 
						|
            raise ValueError(f"Unknown type: {type(val)}")
 | 
						|
 | 
						|
 | 
						|
# Note: Does not support GGML_QKK_64
 | 
						|
QK_K = 256
 | 
						|
# Items here are (block size, type size)
 | 
						|
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
 | 
						|
    GGMLQuantizationType.F32:     (1, 4),
 | 
						|
    GGMLQuantizationType.F16:     (1, 2),
 | 
						|
    GGMLQuantizationType.Q4_0:    (32, 2 + 16),
 | 
						|
    GGMLQuantizationType.Q4_1:    (32, 2 + 2 + 16),
 | 
						|
    GGMLQuantizationType.Q5_0:    (32, 2 + 4 + 16),
 | 
						|
    GGMLQuantizationType.Q5_1:    (32, 2 + 2 + 4 + 16),
 | 
						|
    GGMLQuantizationType.Q8_0:    (32, 2 + 32),
 | 
						|
    GGMLQuantizationType.Q8_1:    (32, 4 + 4 + 32),
 | 
						|
    GGMLQuantizationType.Q2_K:    (256, 2 + 2 + QK_K // 16 + QK_K // 4),
 | 
						|
    GGMLQuantizationType.Q3_K:    (256, 2 + QK_K // 4 + QK_K // 8 + 12),
 | 
						|
    GGMLQuantizationType.Q4_K:    (256, 2 + 2 + QK_K // 2 + 12),
 | 
						|
    GGMLQuantizationType.Q5_K:    (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
 | 
						|
    GGMLQuantizationType.Q6_K:    (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
 | 
						|
    GGMLQuantizationType.Q8_K:    (256, 4 + QK_K + QK_K // 8),
 | 
						|
    GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
 | 
						|
    GGMLQuantizationType.IQ2_XS:  (256, 2 + QK_K // 4 + QK_K // 32),
 | 
						|
    GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
 | 
						|
    GGMLQuantizationType.IQ1_S:   (256, 2 + QK_K // 8 + QK_K // 16),
 | 
						|
    GGMLQuantizationType.IQ4_NL:  (32, 2 + 16),
 | 
						|
    GGMLQuantizationType.IQ3_S:   (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
 | 
						|
    GGMLQuantizationType.IQ2_S:   (256, 2 + QK_K // 4 + QK_K // 16),
 | 
						|
    GGMLQuantizationType.IQ4_XS:  (256, 2 + 2 + QK_K // 2 + QK_K // 64),
 | 
						|
    GGMLQuantizationType.I8:      (1, 1),
 | 
						|
    GGMLQuantizationType.I16:     (1, 2),
 | 
						|
    GGMLQuantizationType.I32:     (1, 4),
 | 
						|
    GGMLQuantizationType.I64:     (1, 8),
 | 
						|
    GGMLQuantizationType.F64:     (1, 8),
 | 
						|
    GGMLQuantizationType.IQ1_M:   (256, QK_K // 8 + QK_K // 16  + QK_K // 32),
 | 
						|
    GGMLQuantizationType.BF16:    (1, 2),
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
# Aliases for backward compatibility.
 | 
						|
 | 
						|
# general
 | 
						|
KEY_GENERAL_ARCHITECTURE         = Keys.General.ARCHITECTURE
 | 
						|
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
 | 
						|
KEY_GENERAL_ALIGNMENT            = Keys.General.ALIGNMENT
 | 
						|
KEY_GENERAL_NAME                 = Keys.General.NAME
 | 
						|
KEY_GENERAL_AUTHOR               = Keys.General.AUTHOR
 | 
						|
KEY_GENERAL_URL                  = Keys.General.URL
 | 
						|
KEY_GENERAL_DESCRIPTION          = Keys.General.DESCRIPTION
 | 
						|
KEY_GENERAL_LICENSE              = Keys.General.LICENSE
 | 
						|
KEY_GENERAL_SOURCE_URL           = Keys.General.SOURCE_URL
 | 
						|
KEY_GENERAL_SOURCE_HF_REPO       = Keys.General.SOURCE_HF_REPO
 | 
						|
KEY_GENERAL_FILE_TYPE            = Keys.General.FILE_TYPE
 | 
						|
 | 
						|
# LLM
 | 
						|
KEY_VOCAB_SIZE            = Keys.LLM.VOCAB_SIZE
 | 
						|
KEY_CONTEXT_LENGTH        = Keys.LLM.CONTEXT_LENGTH
 | 
						|
KEY_EMBEDDING_LENGTH      = Keys.LLM.EMBEDDING_LENGTH
 | 
						|
KEY_BLOCK_COUNT           = Keys.LLM.BLOCK_COUNT
 | 
						|
KEY_FEED_FORWARD_LENGTH   = Keys.LLM.FEED_FORWARD_LENGTH
 | 
						|
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
 | 
						|
KEY_TENSOR_DATA_LAYOUT    = Keys.LLM.TENSOR_DATA_LAYOUT
 | 
						|
 | 
						|
# attention
 | 
						|
KEY_ATTENTION_HEAD_COUNT        = Keys.Attention.HEAD_COUNT
 | 
						|
KEY_ATTENTION_HEAD_COUNT_KV     = Keys.Attention.HEAD_COUNT_KV
 | 
						|
KEY_ATTENTION_MAX_ALIBI_BIAS    = Keys.Attention.MAX_ALIBI_BIAS
 | 
						|
KEY_ATTENTION_CLAMP_KQV         = Keys.Attention.CLAMP_KQV
 | 
						|
KEY_ATTENTION_LAYERNORM_EPS     = Keys.Attention.LAYERNORM_EPS
 | 
						|
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
 | 
						|
 | 
						|
# RoPE
 | 
						|
KEY_ROPE_DIMENSION_COUNT      = Keys.Rope.DIMENSION_COUNT
 | 
						|
KEY_ROPE_FREQ_BASE            = Keys.Rope.FREQ_BASE
 | 
						|
KEY_ROPE_SCALING_TYPE         = Keys.Rope.SCALING_TYPE
 | 
						|
KEY_ROPE_SCALING_FACTOR       = Keys.Rope.SCALING_FACTOR
 | 
						|
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
 | 
						|
KEY_ROPE_SCALING_FINETUNED    = Keys.Rope.SCALING_FINETUNED
 | 
						|
 | 
						|
# SSM
 | 
						|
KEY_SSM_CONV_KERNEL    = Keys.SSM.CONV_KERNEL
 | 
						|
KEY_SSM_INNER_SIZE     = Keys.SSM.INNER_SIZE
 | 
						|
KEY_SSM_STATE_SIZE     = Keys.SSM.STATE_SIZE
 | 
						|
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
 | 
						|
 | 
						|
# tokenization
 | 
						|
KEY_TOKENIZER_MODEL      = Keys.Tokenizer.MODEL
 | 
						|
KEY_TOKENIZER_PRE        = Keys.Tokenizer.PRE
 | 
						|
KEY_TOKENIZER_LIST       = Keys.Tokenizer.LIST
 | 
						|
KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
 | 
						|
KEY_TOKENIZER_SCORES     = Keys.Tokenizer.SCORES
 | 
						|
KEY_TOKENIZER_MERGES     = Keys.Tokenizer.MERGES
 | 
						|
KEY_TOKENIZER_BOS_ID     = Keys.Tokenizer.BOS_ID
 | 
						|
KEY_TOKENIZER_EOS_ID     = Keys.Tokenizer.EOS_ID
 | 
						|
KEY_TOKENIZER_UNK_ID     = Keys.Tokenizer.UNK_ID
 | 
						|
KEY_TOKENIZER_SEP_ID     = Keys.Tokenizer.SEP_ID
 | 
						|
KEY_TOKENIZER_PAD_ID     = Keys.Tokenizer.PAD_ID
 | 
						|
KEY_TOKENIZER_CLS_ID     = Keys.Tokenizer.CLS_ID
 | 
						|
KEY_TOKENIZER_MASK_ID    = Keys.Tokenizer.MASK_ID
 | 
						|
KEY_TOKENIZER_HF_JSON    = Keys.Tokenizer.HF_JSON
 | 
						|
KEY_TOKENIZER_RWKV       = Keys.Tokenizer.RWKV
 | 
						|
KEY_TOKENIZER_PRIFIX_ID  = Keys.Tokenizer.PREFIX_ID
 | 
						|
KEY_TOKENIZER_SUFFIX_ID  = Keys.Tokenizer.SUFFIX_ID
 | 
						|
KEY_TOKENIZER_MIDDLE_ID  = Keys.Tokenizer.MIDDLE_ID
 | 
						|
KEY_TOKENIZER_EOT_ID     = Keys.Tokenizer.EOT_ID
 |