mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* model-conversion : remove hardcoded /bin/bash shebangs [no ci] This commit updates the bash scripts to use env instead of using hardcoded /bin/bash in the shebang line. The motivation for this is that some systems may have bash installed in a different location, and using /usr/bin/env bash ensures that the script will use the first bash interpreter found in the user's PATH, making the scripts more portable across different environments. * model-conversion : rename script to .py [no ci] This commit renames run-casual-gen-embeddings-org.sh to run-casual-gen-embeddings-org.py to reflect its Python nature.
		
			
				
	
	
		
			44 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			44 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env bash
 | 
						|
 | 
						|
set -e
 | 
						|
 | 
						|
MODEL_PATH="${1:-"$MODEL_PATH"}"
 | 
						|
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
 | 
						|
 | 
						|
if [ -t 0 ]; then
 | 
						|
    CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
 | 
						|
else
 | 
						|
    # Process piped JSON data and convert to binary (matching logits.cpp format)
 | 
						|
    TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
 | 
						|
    python3 -c "
 | 
						|
import json
 | 
						|
import sys
 | 
						|
import struct
 | 
						|
 | 
						|
data = json.load(sys.stdin)
 | 
						|
 | 
						|
# Flatten all embeddings completely
 | 
						|
flattened = []
 | 
						|
for item in data:
 | 
						|
    embedding = item['embedding']
 | 
						|
    for token_embedding in embedding:
 | 
						|
        flattened.extend(token_embedding)
 | 
						|
 | 
						|
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
 | 
						|
 | 
						|
# Write as binary floats - matches logitc.cpp fwrite format
 | 
						|
with open('$TEMP_FILE', 'wb') as f:
 | 
						|
    for value in flattened:
 | 
						|
        f.write(struct.pack('f', value))
 | 
						|
"
 | 
						|
    CPP_EMBEDDINGS="$TEMP_FILE"
 | 
						|
    trap "rm -f $TEMP_FILE" EXIT
 | 
						|
fi
 | 
						|
 | 
						|
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
 | 
						|
    --python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
 | 
						|
    --cpp-embeddings $CPP_EMBEDDINGS \
 | 
						|
    --prompt "Hello world today" \
 | 
						|
    --causal
 | 
						|
 |