mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Fix mirostat state when using multiple sequences * Fix mirostat by completely refactoring sampling! * Try to fix zig build. * Export function to fetch/create default sampler states Code formatting cleanups and add some comments Silence a warning about id not being used when logging is disabled * Apply some renaming suggestions. Fix comments that were out of sync with the pull. * Use more consistant naming convention for sampling contexts
		
			
				
	
	
		
			167 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "sampling.h"
 | 
						|
 | 
						|
llama_sampling_context::~llama_sampling_context() {
 | 
						|
    for (auto & it : sequence_contexts) {
 | 
						|
        if (it.second.grammar != NULL) {
 | 
						|
            llama_grammar_free(it.second.grammar);
 | 
						|
            it.second.grammar = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
llama_sampling_context llama_sampling_context_init(
 | 
						|
        const struct gpt_params & params,
 | 
						|
                  llama_grammar * grammar) {
 | 
						|
  llama_sampling_context result;
 | 
						|
 | 
						|
  result.params = params.sampling_params;
 | 
						|
  result.grammar = grammar;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
// Note: Creates the context if it doesn't exist, so this always return something.
 | 
						|
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
 | 
						|
              llama_sampling_context & ctx_sampling,
 | 
						|
        const llama_seq_id             seq) {
 | 
						|
    const auto it = ctx_sampling.sequence_contexts.find(seq);
 | 
						|
    if (it != ctx_sampling.sequence_contexts.end()) {
 | 
						|
        return it->second;
 | 
						|
    }
 | 
						|
    llama_sampler_sequence_context new_ctx = {
 | 
						|
        2.0f * ctx_sampling.params.mirostat_tau,
 | 
						|
        ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
 | 
						|
    };
 | 
						|
    return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
 | 
						|
}
 | 
						|
 | 
						|
bool llama_sampling_context_reset(
 | 
						|
              llama_sampling_context & ctx_sampling,
 | 
						|
        const llama_seq_id             seq) {
 | 
						|
    const auto it = ctx_sampling.sequence_contexts.find(seq);
 | 
						|
    if (it == ctx_sampling.sequence_contexts.end()) return false;
 | 
						|
    if (it->second.grammar != NULL) {
 | 
						|
        llama_grammar_free(it->second.grammar);
 | 
						|
        it->second.grammar = NULL;
 | 
						|
    }
 | 
						|
    ctx_sampling.sequence_contexts.erase(it);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
llama_token llama_sampling_sample(
 | 
						|
                  struct llama_context * ctx,
 | 
						|
                  struct llama_context * ctx_guidance,
 | 
						|
                  struct llama_sampling_context & ctx_sampling,
 | 
						|
        const std::vector<llama_token> & last_tokens,
 | 
						|
         std::vector<llama_token_data> & candidates,
 | 
						|
        const                      int   idx,
 | 
						|
                          llama_seq_id   seq) {
 | 
						|
    const int n_ctx   = llama_n_ctx(ctx);
 | 
						|
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
 | 
						|
 | 
						|
    const llama_sampling_params & params = ctx_sampling.params;
 | 
						|
    const float   temp            = params.temp;
 | 
						|
    const int32_t top_k           = params.top_k <= 0 ? n_vocab : params.top_k;
 | 
						|
    const float   top_p           = params.top_p;
 | 
						|
    const float   tfs_z           = params.tfs_z;
 | 
						|
    const float   typical_p       = params.typical_p;
 | 
						|
    const int32_t repeat_last_n   = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
 | 
						|
    const float   repeat_penalty  = params.repeat_penalty;
 | 
						|
    const float   alpha_presence  = params.presence_penalty;
 | 
						|
    const float   alpha_frequency = params.frequency_penalty;
 | 
						|
    const int     mirostat        = params.mirostat;
 | 
						|
    const float   mirostat_tau    = params.mirostat_tau;
 | 
						|
    const float   mirostat_eta    = params.mirostat_eta;
 | 
						|
    const bool    penalize_nl     = params.penalize_nl;
 | 
						|
 | 
						|
    llama_token id = 0;
 | 
						|
 | 
						|
    float * logits = llama_get_logits_ith(ctx, idx);
 | 
						|
 | 
						|
    // Apply params.logit_bias map
 | 
						|
    for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
 | 
						|
        logits[it->first] += it->second;
 | 
						|
    }
 | 
						|
 | 
						|
    candidates.clear();
 | 
						|
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
        candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
 | 
						|
 | 
						|
    if (ctx_guidance) {
 | 
						|
        llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
 | 
						|
    }
 | 
						|
 | 
						|
    // apply penalties
 | 
						|
    if (!last_tokens.empty()) {
 | 
						|
        const float nl_logit = logits[llama_token_nl(ctx)];
 | 
						|
        const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
 | 
						|
 | 
						|
        llama_sample_repetition_penalty(ctx, &cur_p,
 | 
						|
                last_tokens.data() + last_tokens.size() - last_n_repeat,
 | 
						|
                last_n_repeat, repeat_penalty);
 | 
						|
        llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
 | 
						|
                last_tokens.data() + last_tokens.size() - last_n_repeat,
 | 
						|
                last_n_repeat, alpha_frequency, alpha_presence);
 | 
						|
 | 
						|
        if (!penalize_nl) {
 | 
						|
            for (size_t idx = 0; idx < cur_p.size; idx++) {
 | 
						|
                if (cur_p.data[idx].id == llama_token_nl(ctx)) {
 | 
						|
                    cur_p.data[idx].logit = nl_logit;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
 | 
						|
 | 
						|
    if (ctx_seq.grammar != NULL) {
 | 
						|
        llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
 | 
						|
    }
 | 
						|
 | 
						|
    if (temp <= 0) {
 | 
						|
        // Greedy sampling
 | 
						|
        id = llama_sample_token_greedy(ctx, &cur_p);
 | 
						|
    } else {
 | 
						|
        if (mirostat == 1) {
 | 
						|
            const int mirostat_m = 100;
 | 
						|
            llama_sample_temp(ctx, &cur_p, temp);
 | 
						|
            id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
 | 
						|
        } else if (mirostat == 2) {
 | 
						|
            llama_sample_temp(ctx, &cur_p, temp);
 | 
						|
            id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
 | 
						|
        } else {
 | 
						|
            // Temperature sampling
 | 
						|
            size_t min_keep = std::max(1, params.n_probs);
 | 
						|
            llama_sample_top_k      (ctx, &cur_p, top_k, min_keep);
 | 
						|
            llama_sample_tail_free  (ctx, &cur_p, tfs_z, min_keep);
 | 
						|
            llama_sample_typical    (ctx, &cur_p, typical_p, min_keep);
 | 
						|
            llama_sample_top_p      (ctx, &cur_p, top_p, min_keep);
 | 
						|
            llama_sample_temp(ctx, &cur_p, temp);
 | 
						|
 | 
						|
            {
 | 
						|
                const int n_top = 10;
 | 
						|
                LOG("top %d candidates:\n", n_top);
 | 
						|
 | 
						|
                for (int i = 0; i < n_top; i++) {
 | 
						|
                    const llama_token id = cur_p.data[i].id;
 | 
						|
                    (void)id; // To avoid a warning that id is unused when logging is disabled.
 | 
						|
                    LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            id = llama_sample_token(ctx, &cur_p);
 | 
						|
 | 
						|
            LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ctx_seq.grammar != NULL) {
 | 
						|
        llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
 | 
						|
    }
 | 
						|
 | 
						|
    return id;
 | 
						|
}
 |