mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue.
		
			
				
	
	
		
			137 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Function calling example using pydantic models.
 | 
						||
 | 
						||
import json
 | 
						||
from enum import Enum
 | 
						||
from typing import Union, Optional
 | 
						||
 | 
						||
import requests
 | 
						||
from pydantic import BaseModel, Field
 | 
						||
 | 
						||
import importlib
 | 
						||
from pydantic_models_to_grammar import generate_gbnf_grammar_and_documentation
 | 
						||
 | 
						||
# Function to get completion on the llama.cpp server with grammar.
 | 
						||
def create_completion(prompt, grammar):
 | 
						||
    headers = {"Content-Type": "application/json"}
 | 
						||
    data = {"prompt": prompt, "grammar": grammar}
 | 
						||
 | 
						||
    response = requests.post("http://127.0.0.1:8080/completion", headers=headers, json=data)
 | 
						||
    data = response.json()
 | 
						||
 | 
						||
    print(data["content"])
 | 
						||
    return data["content"]
 | 
						||
 | 
						||
 | 
						||
# A function for the agent to send a message to the user.
 | 
						||
class SendMessageToUser(BaseModel):
 | 
						||
    """
 | 
						||
    Send a message to the User.
 | 
						||
    """
 | 
						||
    chain_of_thought: str = Field(..., description="Your chain of thought while sending the message.")
 | 
						||
    message: str = Field(..., description="Message you want to send to the user.")
 | 
						||
 | 
						||
    def run(self):
 | 
						||
        print(self.message)
 | 
						||
 | 
						||
 | 
						||
# Enum for the calculator function.
 | 
						||
class MathOperation(Enum):
 | 
						||
    ADD = "add"
 | 
						||
    SUBTRACT = "subtract"
 | 
						||
    MULTIPLY = "multiply"
 | 
						||
    DIVIDE = "divide"
 | 
						||
 | 
						||
 | 
						||
# Very simple calculator tool for the agent.
 | 
						||
class Calculator(BaseModel):
 | 
						||
    """
 | 
						||
    Perform a math operation on two numbers.
 | 
						||
    """
 | 
						||
    number_one: Union[int, float] = Field(..., description="First number.")
 | 
						||
    operation: MathOperation = Field(..., description="Math operation to perform.")
 | 
						||
    number_two: Union[int, float] = Field(..., description="Second number.")
 | 
						||
 | 
						||
    def run(self):
 | 
						||
        if self.operation == MathOperation.ADD:
 | 
						||
            return self.number_one + self.number_two
 | 
						||
        elif self.operation == MathOperation.SUBTRACT:
 | 
						||
            return self.number_one - self.number_two
 | 
						||
        elif self.operation == MathOperation.MULTIPLY:
 | 
						||
            return self.number_one * self.number_two
 | 
						||
        elif self.operation == MathOperation.DIVIDE:
 | 
						||
            return self.number_one / self.number_two
 | 
						||
        else:
 | 
						||
            raise ValueError("Unknown operation.")
 | 
						||
 | 
						||
 | 
						||
# Here the grammar gets generated by passing the available function models to generate_gbnf_grammar_and_documentation function. This also generates a documentation usable by the LLM.
 | 
						||
# pydantic_model_list is the list of pydanitc models
 | 
						||
# outer_object_name is an optional name for an outer object around the actual model object. Like a "function" object with "function_parameters" which contains the actual model object. If None, no outer object will be generated
 | 
						||
# outer_object_content is the name of outer object content.
 | 
						||
# model_prefix is the optional prefix for models in the documentation. (Default="Output Model")
 | 
						||
# fields_prefix is the prefix for the model fields in the documentation. (Default="Output Fields")
 | 
						||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
 | 
						||
    pydantic_model_list=[SendMessageToUser, Calculator], outer_object_name="function",
 | 
						||
    outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters")
 | 
						||
 | 
						||
print(gbnf_grammar)
 | 
						||
print(documentation)
 | 
						||
 | 
						||
system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation
 | 
						||
 | 
						||
user_message = "What is 42 * 42?"
 | 
						||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
 | 
						||
 | 
						||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
 | 
						||
# This should output something like this:
 | 
						||
# {
 | 
						||
#     "function": "calculator",
 | 
						||
#     "function_parameters": {
 | 
						||
#         "number_one": 42,
 | 
						||
#         "operation": "multiply",
 | 
						||
#         "number_two": 42
 | 
						||
#     }
 | 
						||
# }
 | 
						||
function_dictionary = json.loads(text)
 | 
						||
if function_dictionary["function"] == "calculator":
 | 
						||
    function_parameters = {**function_dictionary["function_parameters"]}
 | 
						||
 | 
						||
    print(Calculator(**function_parameters).run())
 | 
						||
    # This should output: 1764
 | 
						||
 | 
						||
 | 
						||
# A example structured output based on pydantic models. The LLM will create an entry for a Book database out of an unstructured text.
 | 
						||
class Category(Enum):
 | 
						||
    """
 | 
						||
    The category of the book.
 | 
						||
    """
 | 
						||
    Fiction = "Fiction"
 | 
						||
    NonFiction = "Non-Fiction"
 | 
						||
 | 
						||
 | 
						||
class Book(BaseModel):
 | 
						||
    """
 | 
						||
    Represents an entry about a book.
 | 
						||
    """
 | 
						||
    title: str = Field(..., description="Title of the book.")
 | 
						||
    author: str = Field(..., description="Author of the book.")
 | 
						||
    published_year: Optional[int] = Field(..., description="Publishing year of the book.")
 | 
						||
    keywords: list[str] = Field(..., description="A list of keywords.")
 | 
						||
    category: Category = Field(..., description="Category of the book.")
 | 
						||
    summary: str = Field(..., description="Summary of the book.")
 | 
						||
 | 
						||
 | 
						||
# We need no additional parameters other than our list of pydantic models.
 | 
						||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation([Book])
 | 
						||
 | 
						||
system_message = "You are an advanced AI, tasked to create a dataset entry in JSON for a Book. The following is the expected output model:\n\n" + documentation
 | 
						||
 | 
						||
text = """The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands."""
 | 
						||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
 | 
						||
 | 
						||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
 | 
						||
 | 
						||
json_data = json.loads(text)
 | 
						||
 | 
						||
print(Book(**json_data))
 |