mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 f9cd68398b
			
		
	
	f9cd68398b
	
	
	
		
			
			* sampling : min-p should always return at least one token ggml-ci * sampling : same for typical sampling * tests : sampling tests use min_keep == 0 ggml-ci
		
			
				
	
	
		
			2576 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2576 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama-sampling.h"
 | |
| 
 | |
| #include "llama-impl.h"
 | |
| #include "llama-vocab.h"
 | |
| #include "llama-grammar.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cfloat>
 | |
| #include <chrono>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <unordered_map>
 | |
| #include <stdexcept>
 | |
| 
 | |
| // the ring buffer works similarly to std::deque, but with a fixed capacity
 | |
| template<typename T>
 | |
| struct ring_buffer {
 | |
|     ring_buffer(size_t cap) : capacity(cap), data(cap) {}
 | |
| 
 | |
|     T & front() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[first];
 | |
|     }
 | |
| 
 | |
|     const T & front() const {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[first];
 | |
|     }
 | |
| 
 | |
|     T & back() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[pos];
 | |
|     }
 | |
| 
 | |
|     const T & back() const {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         return data[pos];
 | |
|     }
 | |
| 
 | |
|     void push_back(const T & value) {
 | |
|         if (capacity == 0) {
 | |
|             throw std::runtime_error("ring buffer: capacity is zero");
 | |
|         }
 | |
| 
 | |
|         if (sz == capacity) {
 | |
|             // advance the start when buffer is full
 | |
|             first = (first + 1) % capacity;
 | |
|         } else {
 | |
|             sz++;
 | |
|         }
 | |
|         data[pos] = value;
 | |
|         pos = (pos + 1) % capacity;
 | |
|     }
 | |
| 
 | |
|     T pop_front() {
 | |
|         if (sz == 0) {
 | |
|             throw std::runtime_error("ring buffer is empty");
 | |
|         }
 | |
|         T value = data[first];
 | |
|         first = (first + 1) % capacity;
 | |
|         sz--;
 | |
|         return value;
 | |
|     }
 | |
| 
 | |
|     //T & operator[](size_t i) {
 | |
|     //    if (i >= sz) {
 | |
|     //        throw std::runtime_error("ring buffer: index out of bounds");
 | |
|     //    }
 | |
|     //    return data[(first + i) % capacity];
 | |
|     //}
 | |
| 
 | |
|     //const T & at(size_t i) const {
 | |
|     //    if (i >= sz) {
 | |
|     //        throw std::runtime_error("ring buffer: index out of bounds");
 | |
|     //    }
 | |
|     //    return data[(first + i) % capacity];
 | |
|     //}
 | |
| 
 | |
|     const T & rat(size_t i) const {
 | |
|         if (i >= sz) {
 | |
|             throw std::runtime_error("ring buffer: index out of bounds");
 | |
|         }
 | |
|         return data[(first + sz - i - 1) % capacity];
 | |
|     }
 | |
| 
 | |
|     std::vector<T> to_vector() const {
 | |
|         std::vector<T> result;
 | |
|         result.reserve(sz);
 | |
|         for (size_t i = 0; i < sz; i++) {
 | |
|             result.push_back(data[(first + i) % capacity]);
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     void clear() {
 | |
|         // here only reset the status of the buffer
 | |
|         sz = 0;
 | |
|         first = 0;
 | |
|         pos = 0;
 | |
|     }
 | |
| 
 | |
|     bool empty() const {
 | |
|         return sz == 0;
 | |
|     }
 | |
| 
 | |
|     size_t size() const {
 | |
|         return sz;
 | |
|     }
 | |
| 
 | |
|     size_t capacity = 0;
 | |
|     size_t sz = 0;
 | |
|     size_t first = 0;
 | |
|     size_t pos = 0;
 | |
| 
 | |
|     std::vector<T> data;
 | |
| };
 | |
| 
 | |
| static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
 | |
|     // iterator for the probabilities
 | |
| #ifdef __GNUC__
 | |
|     #pragma GCC diagnostic push
 | |
|     #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
 | |
| #endif
 | |
| 
 | |
|     struct probs_iterator {
 | |
|         typedef std::input_iterator_tag iterator_category;
 | |
|         typedef float value_type;
 | |
|         typedef float * pointer;
 | |
|         typedef float & reference;
 | |
|         typedef ptrdiff_t difference_type;
 | |
| 
 | |
|         const llama_token_data * data;
 | |
| 
 | |
|         bool operator==(const probs_iterator & other) const { return data == other.data; }
 | |
|         bool operator!=(const probs_iterator & other) const { return data != other.data; }
 | |
|         const float & operator*() const { return data->p; }
 | |
|         probs_iterator & operator++() { ++data; return *this; }
 | |
|         probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
 | |
|     };
 | |
| 
 | |
| #ifdef __GNUC__
 | |
|     #pragma GCC diagnostic pop
 | |
| #endif
 | |
| 
 | |
|     std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});
 | |
| 
 | |
|     return dist(rng);
 | |
| }
 | |
| 
 | |
| /*
 | |
| static void llama_log_softmax(float * array, size_t size) {
 | |
|     float max_l = *std::max_element(array, array + size);
 | |
|     float sum = 0.f;
 | |
|     for (size_t i = 0; i < size; ++i) {
 | |
|         float p = expf(array[i] - max_l);
 | |
|         sum += p;
 | |
|         array[i] = p;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < size; ++i) {
 | |
|         array[i] = logf(array[i] / sum);
 | |
|     }
 | |
| }
 | |
| */
 | |
| 
 | |
| static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
 | |
|     if (temp <= 0.0f) {
 | |
|         // find the token with the highest logit and set the rest to -inf
 | |
|         size_t max_i = 0;
 | |
|         float  max_l = cur_p->data[0].logit;
 | |
| 
 | |
|         for (size_t i = 1; i < cur_p->size; ++i) {
 | |
|             if (cur_p->data[i    ].logit > max_l) {
 | |
|                 cur_p->data[max_i].logit = -INFINITY;
 | |
|                 max_i = i;
 | |
|                 max_l = cur_p->data[i].logit;
 | |
|             } else {
 | |
|                 cur_p->data[i].logit = -INFINITY;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         cur_p->data[i].logit /= temp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
 | |
|     GGML_ASSERT(cur_p->size > 0);
 | |
| 
 | |
|     // Sort the logits in descending order
 | |
|     if (!cur_p->sorted) {
 | |
|         std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
 | |
|             return a.logit > b.logit;
 | |
|         });
 | |
|         cur_p->sorted = true;
 | |
|     }
 | |
| 
 | |
|     float max_l = cur_p->data[0].logit;
 | |
|     float cum_sum = 0.0f;
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         float p = expf(cur_p->data[i].logit - max_l);
 | |
|         cur_p->data[i].p = p;
 | |
|         cum_sum += p;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         cur_p->data[i].p /= cum_sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
 | |
|     // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
 | |
|     // if (k >= (int32_t)cur_p->size) {
 | |
|     //     return;
 | |
|     // }
 | |
| 
 | |
|     if (k <= 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     k = std::min(k, (int) cur_p->size);
 | |
| 
 | |
|     // Sort scores in descending order
 | |
|     if (!cur_p->sorted) {
 | |
|         auto comp = [](const llama_token_data & a, const llama_token_data & b) {
 | |
|             return a.logit > b.logit;
 | |
|         };
 | |
|         if (k <= 128) {
 | |
|             std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
 | |
|         } else {
 | |
|             constexpr int   nbuckets     = 128;
 | |
|             constexpr float bucket_low   = -10.0f;
 | |
|             constexpr float bucket_high  =  10.0f;
 | |
|             constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
 | |
|             constexpr float bucket_inter = -bucket_low * bucket_scale;
 | |
| 
 | |
|             std::vector<int> bucket_idx(cur_p->size);
 | |
|             std::vector<int> histo(nbuckets, 0);
 | |
| 
 | |
|             for (int i = 0; i < (int)cur_p->size; ++i) {
 | |
|                 const float val = cur_p->data[i].logit;
 | |
|                 int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
 | |
|                 ib = std::max(0, std::min(nbuckets - 1, ib));
 | |
|                 bucket_idx[i] = ib;
 | |
|                 ++histo[ib];
 | |
|             }
 | |
|             int nhave = 0;
 | |
|             int ib = nbuckets - 1;
 | |
|             for ( ; ib >= 0; --ib) {
 | |
|                 nhave += histo[ib];
 | |
|                 if (nhave >= k) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             std::vector<llama_token_data> tmp_tokens(nhave);
 | |
|             auto * ptr = tmp_tokens.data();
 | |
|             std::vector<llama_token_data*> bucket_ptrs;
 | |
|             bucket_ptrs.reserve(nbuckets - ib);
 | |
|             for (int j = nbuckets - 1; j >= ib; --j) {
 | |
|                 bucket_ptrs.push_back(ptr);
 | |
|                 ptr += histo[j];
 | |
|             }
 | |
|             for (int i = 0; i < (int)cur_p->size; ++i) {
 | |
|                 int j = bucket_idx[i];
 | |
|                 if (j >= ib) {
 | |
|                     *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ptr = tmp_tokens.data();
 | |
|             int ndone = 0;
 | |
|             for (int j = nbuckets - 1; j > ib; --j) {
 | |
|                 std::sort(ptr, ptr + histo[j], comp);
 | |
|                 ptr += histo[j];
 | |
|                 ndone += histo[j];
 | |
|             }
 | |
|             std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
 | |
| 
 | |
|             std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
 | |
| 
 | |
|         }
 | |
|         cur_p->sorted = true;
 | |
|     }
 | |
| 
 | |
|     cur_p->size = k;
 | |
| }
 | |
| 
 | |
| static uint32_t get_rng_seed(uint32_t seed) {
 | |
|     if (seed == LLAMA_DEFAULT_SEED) {
 | |
|         // use system clock if std::random_device is not a true RNG
 | |
|         static bool is_rd_prng = std::random_device().entropy() == 0;
 | |
|         if (is_rd_prng) {
 | |
|             return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
 | |
|         }
 | |
|         std::random_device rd;
 | |
|         return rd();
 | |
|     }
 | |
|     return seed;
 | |
| }
 | |
| 
 | |
| // llama_sampler API
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) {
 | |
|     return new llama_sampler {
 | |
|         /* .iface = */ iface,
 | |
|         /* .ctx   = */ ctx,
 | |
|     };
 | |
| }
 | |
| 
 | |
| const char * llama_sampler_name(const struct llama_sampler * smpl) {
 | |
|     if (!smpl->iface) {
 | |
|         return "(null)";
 | |
|     }
 | |
| 
 | |
|     return smpl->iface->name(smpl);
 | |
| }
 | |
| 
 | |
| void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
 | |
|     if (smpl->iface->accept) {
 | |
|         smpl->iface->accept(smpl, token);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
 | |
|     GGML_ASSERT(smpl->iface->apply);
 | |
|     smpl->iface->apply(smpl, cur_p);
 | |
| }
 | |
| 
 | |
| void llama_sampler_reset(struct llama_sampler * smpl) {
 | |
|     if (smpl->iface->reset) {
 | |
|         smpl->iface->reset(smpl);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
 | |
|     if (smpl->iface->clone) {
 | |
|         return smpl->iface->clone(smpl);
 | |
|     }
 | |
| 
 | |
|     if (smpl->ctx == nullptr) {
 | |
|         return llama_sampler_init(
 | |
|             /* .iface = */ smpl->iface,
 | |
|             /* .ctx   = */ nullptr
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("the sampler does not support cloning");
 | |
| }
 | |
| 
 | |
| void llama_sampler_free(struct llama_sampler * smpl) {
 | |
|     if (smpl == nullptr) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (smpl->iface->free) {
 | |
|         smpl->iface->free(smpl);
 | |
|     }
 | |
| 
 | |
|     delete smpl;
 | |
| }
 | |
| 
 | |
| llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
 | |
|     const auto * logits = llama_get_logits_ith(ctx, idx);
 | |
| 
 | |
|     const llama_model * model = llama_get_model(ctx);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
| 
 | |
|     // TODO: do not allocate each time
 | |
|     std::vector<llama_token_data> cur;
 | |
|     cur.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|         cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array cur_p = {
 | |
|         /* .data       = */ cur.data(),
 | |
|         /* .size       = */ cur.size(),
 | |
|         /* .selected   = */ -1,
 | |
|         /* .sorted     = */ false,
 | |
|     };
 | |
| 
 | |
|     llama_sampler_apply(smpl, &cur_p);
 | |
| 
 | |
|     GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
 | |
| 
 | |
|     auto token = cur_p.data[cur_p.selected].id;
 | |
| 
 | |
|     llama_sampler_accept(smpl, token);
 | |
| 
 | |
|     return token;
 | |
| }
 | |
| 
 | |
| // sampler chain
 | |
| 
 | |
| static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "chain";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
 | |
|     auto * chain = (llama_sampler_chain *) smpl->ctx;
 | |
| 
 | |
|     time_meas tm(chain->t_sample_us, chain->params.no_perf);
 | |
| 
 | |
|     for (auto * smpl : chain->samplers) {
 | |
|         llama_sampler_accept(smpl, token);
 | |
|     }
 | |
| 
 | |
|     chain->n_sample++;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * chain = (llama_sampler_chain *) smpl->ctx;
 | |
| 
 | |
|     time_meas tm(chain->t_sample_us, chain->params.no_perf);
 | |
| 
 | |
|     for (auto * smpl : chain->samplers) {
 | |
|         llama_sampler_apply(smpl, cur_p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
 | |
|     auto * chain = (llama_sampler_chain *) smpl->ctx;
 | |
| 
 | |
|     for (auto * smpl : chain->samplers) {
 | |
|         llama_sampler_reset(smpl);
 | |
|     }
 | |
| 
 | |
|     chain->t_sample_us = 0;
 | |
|     chain->n_sample    = 0;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;
 | |
| 
 | |
|     auto * result = llama_sampler_chain_init(chain_src->params);
 | |
| 
 | |
|     for (auto * smpl : chain_src->samplers) {
 | |
|         llama_sampler_chain_add(result, llama_sampler_clone(smpl));
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_chain_free(struct llama_sampler * smpl) {
 | |
|     auto * chain = (llama_sampler_chain *) smpl->ctx;
 | |
| 
 | |
|     for (auto * smpl : chain->samplers) {
 | |
|         llama_sampler_free(smpl);
 | |
|     }
 | |
| 
 | |
|     delete chain;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_chain_i = {
 | |
|     /* .name   = */ llama_sampler_chain_name,
 | |
|     /* .accept = */ llama_sampler_chain_accept,
 | |
|     /* .apply  = */ llama_sampler_chain_apply,
 | |
|     /* .reset  = */ llama_sampler_chain_reset,
 | |
|     /* .clone  = */ llama_sampler_chain_clone,
 | |
|     /* .free   = */ llama_sampler_chain_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_chain_i,
 | |
|         /* .ctx   = */ new llama_sampler_chain {
 | |
|             /* .params      = */ params,
 | |
|             /* .samplers    = */ {},
 | |
|             /* .t_sample_us = */ 0,
 | |
|             /* .n_sample    = */ 0,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
 | |
|     auto * p = (llama_sampler_chain *) chain->ctx;
 | |
|     p->samplers.push_back(smpl);
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
 | |
|     const auto * p = (const llama_sampler_chain *) chain->ctx;
 | |
| 
 | |
|     if (i < 0 || (size_t) i >= p->samplers.size()) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return p->samplers[i];
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
 | |
|     auto * p = (llama_sampler_chain *) chain->ctx;
 | |
| 
 | |
|     if (i < 0 || (size_t) i >= p->samplers.size()) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     auto * result = p->samplers[i];
 | |
|     p->samplers.erase(p->samplers.begin() + i);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int llama_sampler_chain_n(const struct llama_sampler * chain) {
 | |
|     const auto * p = (const llama_sampler_chain *) chain->ctx;
 | |
| 
 | |
|     return p->samplers.size();
 | |
| }
 | |
| 
 | |
| //
 | |
| // samplers
 | |
| //
 | |
| 
 | |
| // greedy
 | |
| 
 | |
| static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "greedy";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
 | |
|     cur_p->selected = 0;
 | |
|     for (size_t i = 1; i < cur_p->size; ++i) {
 | |
|         if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
 | |
|             cur_p->selected = i;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_greedy_i = {
 | |
|     /* .name   = */ llama_sampler_greedy_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_greedy_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ nullptr,
 | |
|     /* .free   = */ nullptr,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_greedy() {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_greedy_i,
 | |
|         /* .ctx   = */ nullptr
 | |
|     );
 | |
| }
 | |
| 
 | |
| // dist
 | |
| 
 | |
| struct llama_sampler_dist {
 | |
|     const uint32_t seed;
 | |
|           uint32_t seed_cur;
 | |
| 
 | |
|     std::mt19937 rng;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "dist";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_dist *) smpl->ctx;
 | |
| 
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
 | |
|     auto * result = llama_sampler_init_dist(ctx->seed);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_dist *) result->ctx;
 | |
| 
 | |
|         result_ctx->rng = ctx->rng;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_dist *) smpl->ctx;
 | |
|     ctx->seed_cur = get_rng_seed(ctx->seed);
 | |
|     ctx->rng.seed(ctx->seed_cur);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dist_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_dist *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_dist_i = {
 | |
|     /* .name   = */ llama_sampler_dist_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_dist_apply,
 | |
|     /* .reset  = */ llama_sampler_dist_reset,
 | |
|     /* .clone  = */ llama_sampler_dist_clone,
 | |
|     /* .free   = */ llama_sampler_dist_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
 | |
|     auto seed_cur = get_rng_seed(seed);
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_dist_i,
 | |
|         /* .ctx   = */ new llama_sampler_dist {
 | |
|             /* .seed     = */ seed,
 | |
|             /* .seed_cur = */ seed_cur,
 | |
|             /* .rng      = */ std::mt19937(seed_cur),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // softmax
 | |
| 
 | |
| static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "softmax";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_softmax_i = {
 | |
|     /* .name   = */ llama_sampler_softmax_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_softmax_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ nullptr,
 | |
|     /* .free   = */ nullptr,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_softmax() {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_softmax_i,
 | |
|         /* .ctx   = */ nullptr
 | |
|     );
 | |
| }
 | |
| 
 | |
| // top-k
 | |
| 
 | |
| struct llama_sampler_top_k {
 | |
|     const int32_t k;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "top-k";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
 | |
|     llama_sampler_top_k_impl(cur_p, ctx->k);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
 | |
|     return llama_sampler_init_top_k(ctx->k);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_top_k *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_top_k_i = {
 | |
|     /* .name   = */ llama_sampler_top_k_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_top_k_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_top_k_clone,
 | |
|     /* .free   = */ llama_sampler_top_k_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_top_k_i,
 | |
|         /* .ctx   = */ new llama_sampler_top_k {
 | |
|             /* .k = */ k,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // top-p
 | |
| 
 | |
| struct llama_sampler_top_p {
 | |
|     const float  p;
 | |
|     const size_t min_keep;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "top-p";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_top_p *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->p >= 1.0f) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     // Compute the cumulative probabilities
 | |
|     float cum_sum = 0.0f;
 | |
|     size_t last_idx = cur_p->size;
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         cum_sum += cur_p->data[i].p;
 | |
| 
 | |
|         // Check if the running sum is at least p or if we have kept at least min_keep tokens
 | |
|         // we set the last index to i+1 to indicate that the current iterate should be included in the set
 | |
|         if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
 | |
|             last_idx = i + 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Resize the output vector to keep only the top-p tokens
 | |
|     cur_p->size = last_idx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
 | |
|     return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_top_p *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_top_p_i = {
 | |
|     /* .name   = */ llama_sampler_top_p_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_top_p_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_top_p_clone,
 | |
|     /* .free   = */ llama_sampler_top_p_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_top_p_i,
 | |
|         /* .ctx   = */ new llama_sampler_top_p {
 | |
|             /* .p        = */ p,
 | |
|             /* .min_keep = */ min_keep,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // min-p
 | |
| 
 | |
| struct llama_sampler_min_p {
 | |
|     const float  p;
 | |
|     const size_t min_keep;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "min-p";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_min_p *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->p <= 0.0f || !cur_p->size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bool min_p_applied = false;
 | |
| 
 | |
|     // if the cur_p aren't sorted, try the unsorted implementation first
 | |
|     if (!cur_p->sorted) {
 | |
|         std::vector<llama_token_data> filtered_tokens;
 | |
| 
 | |
|         float max_logit = -FLT_MAX;
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             max_logit = std::max(max_logit, cur_p->data[i].logit);
 | |
|         }
 | |
|         const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
 | |
| 
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             if (cur_p->data[i].logit >= min_logit) {
 | |
|                 filtered_tokens.push_back(cur_p->data[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // if we have enough values the operation was a success
 | |
|         if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) {
 | |
|             memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
 | |
|             cur_p->size = filtered_tokens.size();
 | |
|             min_p_applied = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if the cur_p are sorted or the unsorted implementation failed, use this implementation
 | |
|     if (!min_p_applied) {
 | |
|         // Sort the logits in descending order
 | |
|         if (!cur_p->sorted) {
 | |
|             std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
 | |
|                 return a.logit > b.logit;
 | |
|             });
 | |
|             cur_p->sorted = true;
 | |
|         }
 | |
| 
 | |
|         const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
 | |
|         size_t i = 1; // first token always matches
 | |
| 
 | |
|         for (; i < cur_p->size; ++i) {
 | |
|             if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
 | |
|                 break; // prob too small
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Resize the output vector to keep only the matching tokens
 | |
|         cur_p->size = i;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
 | |
|     return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_min_p *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_min_p_i = {
 | |
|     /* .name   = */ llama_sampler_min_p_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_min_p_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_min_p_clone,
 | |
|     /* .free   = */ llama_sampler_min_p_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_min_p_i,
 | |
|         /* .ctx   = */ new llama_sampler_min_p {
 | |
|             /* .p        = */ p,
 | |
|             /* .min_keep = */ min_keep,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // typical
 | |
| 
 | |
| struct llama_sampler_typical {
 | |
|     const float  p;
 | |
|     const size_t min_keep;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "typical";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_typical *) smpl->ctx;
 | |
| 
 | |
|     // Reference implementation:
 | |
|     // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
 | |
|     if (ctx->p >= 1.0f) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Compute the softmax of logits and calculate entropy
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     float entropy = 0.0f;
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
 | |
|     }
 | |
| 
 | |
|     // Compute the absolute difference between negative log probability and entropy for each candidate
 | |
|     std::vector<float> shifted_scores;
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
 | |
|         shifted_scores.push_back(shifted_score);
 | |
|     }
 | |
| 
 | |
|     // Sort tokens based on the shifted_scores and their corresponding indices
 | |
|     std::vector<size_t> indices(cur_p->size);
 | |
|     std::iota(indices.begin(), indices.end(), 0);
 | |
| 
 | |
|     std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
 | |
|         return shifted_scores[a] < shifted_scores[b];
 | |
|     });
 | |
| 
 | |
|     // Compute the cumulative probabilities
 | |
|     float cum_sum = 0.0f;
 | |
|     size_t last_idx = indices.size();
 | |
| 
 | |
|     for (size_t i = 0; i < indices.size(); ++i) {
 | |
|         size_t idx = indices[i];
 | |
|         cum_sum += cur_p->data[idx].p;
 | |
| 
 | |
|         // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
 | |
|         if (cum_sum > ctx->p && (ctx->min_keep == 0 || i >= ctx->min_keep - 1)) {
 | |
|             last_idx = i + 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Resize the output vector to keep only the locally typical tokens
 | |
|     std::vector<llama_token_data> cur_p_new;
 | |
|     for (size_t i = 0; i < last_idx; ++i) {
 | |
|         size_t idx = indices[i];
 | |
|         cur_p_new.push_back(cur_p->data[idx]);
 | |
|     }
 | |
| 
 | |
|     // Replace the data in cur_p with the cur_p_new data
 | |
|     std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
 | |
|     cur_p->size = cur_p_new.size();
 | |
|     cur_p->sorted = false;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
 | |
|     return llama_sampler_init_typical(ctx->p, ctx->min_keep);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_typical_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_typical *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_typical_i = {
 | |
|     /* .name   = */ llama_sampler_typical_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_typical_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_typical_clone,
 | |
|     /* .free   = */ llama_sampler_typical_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_typical_i,
 | |
|         /* .ctx   = */ new llama_sampler_typical {
 | |
|             /* .p        = */ p,
 | |
|             /* .min_keep = */ min_keep,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // temp
 | |
| 
 | |
| struct llama_sampler_temp {
 | |
|     const float temp;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "temp";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_temp *) smpl->ctx;
 | |
| 
 | |
|     llama_sampler_temp_impl(cur_p, ctx->temp);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
 | |
|     return llama_sampler_init_temp(ctx->temp);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_temp_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_temp *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_temp_i = {
 | |
|     /* .name   = */ llama_sampler_temp_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_temp_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_temp_clone,
 | |
|     /* .free   = */ llama_sampler_temp_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_temp(float temp) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_temp_i,
 | |
|         /* .ctx   = */ new llama_sampler_temp {
 | |
|             /*.temp = */ temp,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // temp-ext
 | |
| 
 | |
| struct llama_sampler_temp_ext {
 | |
|     const float temp;
 | |
|     const float delta;
 | |
|     const float exponent;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "temp-ext";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
 | |
|     if (ctx->delta > 0) {
 | |
|         const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
 | |
|         const float max_temp = ctx->temp + ctx->delta;
 | |
| 
 | |
|         float exponent_val = ctx->exponent;
 | |
| 
 | |
|         // no need to do anything if there is only one (or zero) candidates
 | |
|         if (cur_p->size <= 1) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Calculate maximum possible entropy
 | |
|         float max_entropy = -logf(1.0f / cur_p->size);
 | |
| 
 | |
|         llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|         // Calculate entropy of the softmax probabilities
 | |
|         float entropy = 0.0f;
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             float prob = cur_p->data[i].p;
 | |
|             if (prob > 0.0f) { // Ensure no log(0)
 | |
|                 entropy -= prob * logf(prob);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
 | |
|         float normalized_entropy = entropy / max_entropy;
 | |
| 
 | |
|         // Map the normalized entropy to the desired temperature range using the power function
 | |
|         float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
 | |
| 
 | |
|     #ifdef DEBUG
 | |
|         LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
 | |
|         LLAMA_LOG_INFO("Entropy: %f\n", entropy);
 | |
|         LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
 | |
|         LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
 | |
|         LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
 | |
|         LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
 | |
|     #endif
 | |
| 
 | |
|         // Apply the dynamically calculated temperature scaling
 | |
|         llama_sampler_temp_impl(cur_p, dyn_temp);
 | |
| 
 | |
|         // Re-compute softmax probabilities after scaling logits with dynamic temperature
 | |
|         const double max_l_double = cur_p->data[0].logit;
 | |
| 
 | |
|         double cum_sum_double = 0.0;
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             double p = exp(cur_p->data[i].logit - max_l_double);
 | |
|             cur_p->data[i].p = p; // Store the scaled probability
 | |
|             cum_sum_double += p;
 | |
|         }
 | |
| 
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
 | |
|         }
 | |
| 
 | |
|     #ifdef DEBUG
 | |
|         // Print the updated top 25 probabilities after temperature scaling
 | |
|         LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
 | |
|         for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
 | |
|             LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
 | |
|         }
 | |
|     #endif
 | |
|     } else {
 | |
|         llama_sampler_temp_impl(cur_p, ctx->temp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
 | |
|     return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_temp_ext *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_temp_ext_i = {
 | |
|     /* .name   = */ llama_sampler_temp_ext_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_temp_ext_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_temp_ext_clone,
 | |
|     /* .free   = */ llama_sampler_temp_ext_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_temp_ext_i,
 | |
|         /* .ctx   = */ new llama_sampler_temp_ext {
 | |
|             /* .temp     = */ temp,
 | |
|             /* .delta    = */ delta,
 | |
|             /* .exponent = */ exponent,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // xtc
 | |
| 
 | |
| struct llama_sampler_xtc {
 | |
|     const float    probability;
 | |
|     const float    threshold;
 | |
|     const size_t   min_keep;
 | |
| 
 | |
|     const uint32_t seed;
 | |
|     uint32_t       seed_cur;
 | |
| 
 | |
|     std::mt19937   rng;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "xtc";
 | |
| }
 | |
| 
 | |
| static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_xtc *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->probability <= 0.0f
 | |
|         || ctx->threshold > 0.5f
 | |
|         || cur_p->size < 2) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
 | |
|     float chance = distribution(ctx->rng);
 | |
|     if (chance > ctx->probability) return;
 | |
| 
 | |
|     // in case it's not sorted/recalculated yet
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     int pos_last = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         if (cur_p->data[i].p >= ctx->threshold) {
 | |
|             pos_last = i;
 | |
|         } else break;
 | |
|     }
 | |
| 
 | |
|     if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
 | |
|         cur_p->data += pos_last;
 | |
|         cur_p->size -= pos_last;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
 | |
|     auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_xtc *) result->ctx;
 | |
| 
 | |
|         result_ctx->rng = ctx->rng;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_xtc *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_xtc *) smpl->ctx;
 | |
|     ctx->seed_cur = get_rng_seed(ctx->seed);
 | |
|     ctx->rng.seed(ctx->seed_cur);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_xtc_i = {
 | |
|     /* .name   = */ llama_sampler_xtc_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sample_xtc_apply,
 | |
|     /* .reset  = */ llama_sampler_xtc_reset,
 | |
|     /* .clone  = */ llama_sampler_xtc_clone,
 | |
|     /* .free   = */ llama_sampler_xtc_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
 | |
|     auto seed_cur = get_rng_seed(seed);
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_xtc_i,
 | |
|         /* .ctx   = */ new llama_sampler_xtc {
 | |
|             /* .probability   = */ p,
 | |
|             /* .threshold     = */ t,
 | |
|             /* .min_keep      = */ min_keep,
 | |
|             /* .seed          = */ seed,
 | |
|             /* .seed_cur      = */ seed_cur,
 | |
|             /* .rng           = */ std::mt19937(seed_cur),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // mirostat
 | |
| 
 | |
| struct llama_sampler_mirostat {
 | |
|     const int32_t n_vocab;
 | |
| 
 | |
|     const uint32_t seed;
 | |
|           uint32_t seed_cur;
 | |
| 
 | |
|     const float tau;
 | |
|     const float eta;
 | |
| 
 | |
|     const int32_t m;
 | |
| 
 | |
|     float mu;
 | |
| 
 | |
|     std::mt19937 rng;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "mirostat";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
 | |
| 
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     // Estimate s_hat using the most probable m tokens
 | |
|     float s_hat = 0.0;
 | |
|     float sum_ti_bi = 0.0;
 | |
|     float sum_ti_sq = 0.0;
 | |
|     for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
 | |
|         float t_i = logf(float(i + 2) / float(i + 1));
 | |
|         float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
 | |
|         sum_ti_bi += t_i * b_i;
 | |
|         sum_ti_sq += t_i * t_i;
 | |
|     }
 | |
|     s_hat = sum_ti_bi / sum_ti_sq;
 | |
| 
 | |
|     // Compute k from the estimated s_hat and target surprise value
 | |
|     float epsilon_hat = s_hat - 1;
 | |
|     float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
 | |
| 
 | |
|     llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     const int idx = llama_sample_dist(cur_p, ctx->rng);
 | |
| 
 | |
|     cur_p->selected = idx;
 | |
| 
 | |
|     float observed_surprise = -log2f(cur_p->data[idx].p);
 | |
|     float e = observed_surprise - ctx->tau;
 | |
| 
 | |
|     // Update mu using the learning rate and error
 | |
|     ctx->mu = ctx->mu - ctx->eta * e;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
 | |
|     auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;
 | |
| 
 | |
|         result_ctx->mu  = ctx->mu;
 | |
|         result_ctx->rng = ctx->rng;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
 | |
|     ctx->mu = 2.0f*ctx->tau;
 | |
|     ctx->seed_cur = get_rng_seed(ctx->seed);
 | |
|     ctx->rng.seed(ctx->seed_cur);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_mirostat *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_mirostat_i = {
 | |
|     /* .name   = */ llama_sampler_mirostat_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_mirostat_apply,
 | |
|     /* .reset  = */ llama_sampler_mirostat_reset,
 | |
|     /* .clone  = */ llama_sampler_mirostat_clone,
 | |
|     /* .free   = */ llama_sampler_mirostat_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
 | |
|     auto seed_cur = get_rng_seed(seed);
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_mirostat_i,
 | |
|         /* .ctx   = */ new llama_sampler_mirostat {
 | |
|             /* .n_vocab  = */ n_vocab,
 | |
|             /* .seed     = */ seed,
 | |
|             /* .seed_cur = */ seed_cur,
 | |
|             /* .tau      = */ tau,
 | |
|             /* .eta      = */ eta,
 | |
|             /* .m        = */ m,
 | |
|             /* .mu       = */ 2.0f*tau,
 | |
|             /* .rng      = */ std::mt19937(seed_cur),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // mirostat v2
 | |
| 
 | |
| struct llama_sampler_mirostat_v2 {
 | |
|     const uint32_t seed;
 | |
|           uint32_t seed_cur;
 | |
| 
 | |
|     const float tau;
 | |
|     const float eta;
 | |
| 
 | |
|     float mu;
 | |
| 
 | |
|     std::mt19937 rng;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "mirostat-v2";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
 | |
| 
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     // Truncate the words with surprise values greater than mu
 | |
|     cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
 | |
|         return -log2f(candidate.p) > ctx->mu;
 | |
|     }));
 | |
| 
 | |
|     if (cur_p->size == 0) {
 | |
|         cur_p->size = 1;
 | |
|     }
 | |
| 
 | |
|     // Normalize the probabilities of the remaining words
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
|     const int idx = llama_sample_dist(cur_p, ctx->rng);
 | |
| 
 | |
|     cur_p->selected = idx;
 | |
| 
 | |
|     float observed_surprise = -log2f(cur_p->data[idx].p);
 | |
|     float e = observed_surprise - ctx->tau;
 | |
| 
 | |
|     // Update mu using the learning rate and error
 | |
|     ctx->mu = ctx->mu - ctx->eta * e;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
 | |
|     ctx->mu = 2.0f*ctx->tau;
 | |
|     ctx->seed_cur = get_rng_seed(ctx->seed);
 | |
|     ctx->rng.seed(ctx->seed_cur);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;
 | |
| 
 | |
|     auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;
 | |
| 
 | |
|         result_ctx->mu  = ctx->mu;
 | |
|         result_ctx->rng = ctx->rng;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_mirostat_v2 *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
 | |
|     /* .name   = */ llama_sampler_mirostat_v2_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_mirostat_v2_apply,
 | |
|     /* .reset  = */ llama_sampler_mirostat_v2_reset,
 | |
|     /* .clone  = */ llama_sampler_mirostat_v2_clone,
 | |
|     /* .free   = */ llama_sampler_mirostat_v2_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
 | |
|     auto seed_cur = get_rng_seed(seed);
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_mirostat_v2_i,
 | |
|         /* .ctx   = */ new llama_sampler_mirostat_v2 {
 | |
|             /* .seed     = */ seed,
 | |
|             /* .seed_cur = */ seed_cur,
 | |
|             /* .tau      = */ tau,
 | |
|             /* .eta      = */ eta,
 | |
|             /* .mu       = */ 2.0f*tau,
 | |
|             /* .rng      = */ std::mt19937(seed_cur),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // grammar
 | |
| 
 | |
| struct llama_sampler_grammar {
 | |
|     const struct llama_vocab * vocab;
 | |
| 
 | |
|     std::string grammar_str;
 | |
|     std::string grammar_root;
 | |
| 
 | |
|     struct llama_grammar * grammar;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "grammar";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
 | |
|     auto * ctx = (llama_sampler_grammar *) smpl->ctx;
 | |
|     if (ctx->grammar) {
 | |
|         llama_grammar_accept_impl(*ctx->grammar, token);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_grammar *) smpl->ctx;
 | |
|     if (ctx->grammar) {
 | |
|         llama_grammar_apply_impl(*ctx->grammar, cur_p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
 | |
| static struct llama_sampler * llama_sampler_init_grammar_impl(
 | |
|         const struct llama_vocab * vocab,
 | |
|                       const char * grammar_str,
 | |
|                       const char * grammar_root,
 | |
|                               bool lazy,
 | |
|                      const char ** trigger_words,
 | |
|                             size_t num_trigger_words,
 | |
|                const llama_token * trigger_tokens,
 | |
|                             size_t num_trigger_tokens,
 | |
|                      const char ** trigger_patterns,
 | |
|                             size_t num_trigger_patterns);
 | |
| 
 | |
| static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_grammar *) smpl->ctx;
 | |
|     if (!ctx->grammar) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     std::vector<const char *>  trigger_patterns_c;
 | |
|     trigger_patterns_c.reserve(ctx->grammar->trigger_patterns.size());
 | |
|     for (auto & trigger_pattern : ctx->grammar->trigger_patterns) {
 | |
|         trigger_patterns_c.push_back(trigger_pattern.pattern.c_str());
 | |
|     }
 | |
| 
 | |
|     auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
 | |
|                                                  ctx->grammar->lazy, trigger_patterns_c.data(), trigger_patterns_c.size(),
 | |
|                                                  ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
 | |
| 
 | |
|     llama_grammar_free_impl(ctx->grammar);
 | |
|     ctx->grammar = grammar_new;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
 | |
| 
 | |
|     auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0, nullptr, 0);
 | |
|     GGML_ASSERT(result);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_grammar *) result->ctx;
 | |
| 
 | |
|         if (ctx->grammar) {
 | |
|             result_ctx->grammar_str  = ctx->grammar_str;
 | |
|             result_ctx->grammar_root = ctx->grammar_root;
 | |
| 
 | |
|             result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (llama_sampler_grammar *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->grammar) {
 | |
|         llama_grammar_free_impl(ctx->grammar);
 | |
|     }
 | |
| 
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_grammar_i = {
 | |
|     /* .name   = */ llama_sampler_grammar_name,
 | |
|     /* .accept = */ llama_sampler_grammar_accept_impl,
 | |
|     /* .apply  = */ llama_sampler_grammar_apply,
 | |
|     /* .reset  = */ llama_sampler_grammar_reset,
 | |
|     /* .clone  = */ llama_sampler_grammar_clone,
 | |
|     /* .free   = */ llama_sampler_grammar_free,
 | |
| };
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_init_grammar_impl(
 | |
|         const struct llama_vocab * vocab,
 | |
|                       const char * grammar_str,
 | |
|                       const char * grammar_root,
 | |
|                               bool lazy,
 | |
|                      const char ** trigger_words,
 | |
|                             size_t num_trigger_words,
 | |
|                const llama_token * trigger_tokens,
 | |
|                             size_t num_trigger_tokens,
 | |
|                      const char ** trigger_patterns,
 | |
|                             size_t num_trigger_patterns) {
 | |
|     auto * ctx = new llama_sampler_grammar;
 | |
| 
 | |
|     if (grammar_str != nullptr && grammar_str[0] != '\0') {
 | |
|         // TODO: remove trigger_words support.
 | |
|         if (trigger_words != nullptr && num_trigger_words > 0) {
 | |
|             GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
 | |
|             std::string trigger_pattern("[\\s\\S]*?(");
 | |
|             for (size_t i = 0; i < num_trigger_words; ++i) {
 | |
|                 static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
 | |
|                 if (i > 0) {
 | |
|                     trigger_pattern += "|";
 | |
|                 }
 | |
|                 trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
 | |
|             }
 | |
|             trigger_pattern += ")[\\s\\S]*";
 | |
|             auto trigger_pattern_c = trigger_pattern.c_str();
 | |
|             trigger_patterns = &trigger_pattern_c;
 | |
|             num_trigger_patterns = 1;
 | |
|         }
 | |
|         *ctx = {
 | |
|             /* .vocab        = */ vocab,
 | |
|             /* .grammar_str  = */ grammar_str,
 | |
|             /* .grammar_root = */ grammar_root,
 | |
|             /* .grammar      = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens),
 | |
|         };
 | |
|         if (!ctx->grammar) {
 | |
|             delete ctx;
 | |
|             return nullptr;
 | |
|         }
 | |
|     } else {
 | |
|         *ctx = {
 | |
|             /* .vocab        = */ vocab,
 | |
|             /* .grammar_str  = */ {},
 | |
|             /* .grammar_root = */ {},
 | |
|             /* .grammar      = */ nullptr,
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_grammar_i,
 | |
|         /* .ctx   = */ ctx
 | |
|     );
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_grammar(
 | |
|         const struct llama_vocab * vocab,
 | |
|                       const char * grammar_str,
 | |
|                       const char * grammar_root) {
 | |
|     return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0, nullptr, 0);
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_grammar_lazy(
 | |
|         const struct llama_vocab * vocab,
 | |
|                       const char * grammar_str,
 | |
|                       const char * grammar_root,
 | |
|                      const char ** trigger_words,
 | |
|                             size_t num_trigger_words,
 | |
|                const llama_token * trigger_tokens,
 | |
|                             size_t num_trigger_tokens) {
 | |
|     return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens, nullptr, 0);
 | |
| }
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_grammar_lazy_patterns(
 | |
|         const struct llama_vocab * vocab,
 | |
|                       const char * grammar_str,
 | |
|                       const char * grammar_root,
 | |
|                      const char ** trigger_patterns,
 | |
|                             size_t num_trigger_patterns,
 | |
|                const llama_token * trigger_tokens,
 | |
|                             size_t num_trigger_tokens) {
 | |
|     return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, nullptr, 0, trigger_tokens, num_trigger_tokens, trigger_patterns, num_trigger_patterns);
 | |
| }
 | |
| 
 | |
| // penalties
 | |
| 
 | |
| struct llama_sampler_penalties {
 | |
|     const int32_t penalty_last_n;
 | |
|     const float   penalty_repeat;
 | |
|     const float   penalty_freq;
 | |
|     const float   penalty_present;
 | |
| 
 | |
|     ring_buffer<llama_token> prev;
 | |
| 
 | |
|     // a frequency map to count token occurrences
 | |
|     std::unordered_map<llama_token, int> token_count;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "penalties";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
 | |
|     auto * ctx = (llama_sampler_penalties *) smpl->ctx;
 | |
|     if (ctx->penalty_last_n == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ctx->token_count[token]++;
 | |
| 
 | |
|     // if the ring buffer is full, remove the oldest token
 | |
|     if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) {
 | |
|         const auto old = ctx->prev.front();
 | |
| 
 | |
|         ctx->token_count[old]--;
 | |
|         if (ctx->token_count[old] == 0) {
 | |
|             ctx->token_count.erase(old);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->prev.push_back(token);
 | |
| 
 | |
| #if 0
 | |
|     // sanity check
 | |
|     std::unordered_map<llama_token, int> tmp;
 | |
|     for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
 | |
|         tmp[ctx->prev.rat(i)]++;
 | |
|     }
 | |
| 
 | |
|     assert(ctx->token_count == tmp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_penalties *) smpl->ctx;
 | |
| 
 | |
|     if ((ctx->penalty_last_n == 0) ||
 | |
|         (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Apply frequency and presence penalties to the cur_p
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         const auto token_iter = ctx->token_count.find(cur_p->data[i].id);
 | |
|         if (token_iter == ctx->token_count.end()) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const int count = token_iter->second;
 | |
| 
 | |
|         assert(count > 0 && count <= ctx->penalty_last_n);
 | |
| 
 | |
|         // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
 | |
|         // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
 | |
|         if (cur_p->data[i].logit <= 0) {
 | |
|             cur_p->data[i].logit *= ctx->penalty_repeat;
 | |
|         } else {
 | |
|             cur_p->data[i].logit /= ctx->penalty_repeat;
 | |
|         }
 | |
| 
 | |
|         cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
 | |
|     }
 | |
| 
 | |
|     cur_p->sorted = false;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_penalties *) smpl->ctx;
 | |
|     ctx->prev.clear();
 | |
|     ctx->token_count.clear();
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
 | |
|     auto * result = llama_sampler_init_penalties(
 | |
|             ctx->penalty_last_n,
 | |
|             ctx->penalty_repeat,
 | |
|             ctx->penalty_freq,
 | |
|             ctx->penalty_present);
 | |
| 
 | |
|     // copy the state
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_penalties *) result->ctx;
 | |
| 
 | |
|         result_ctx->prev = ctx->prev;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_penalties *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_penalties_i = {
 | |
|     /* .name   = */ llama_sampler_penalties_name,
 | |
|     /* .accept = */ llama_sampler_penalties_accept,
 | |
|     /* .apply  = */ llama_sampler_penalties_apply,
 | |
|     /* .reset  = */ llama_sampler_penalties_reset,
 | |
|     /* .clone  = */ llama_sampler_penalties_clone,
 | |
|     /* .free   = */ llama_sampler_penalties_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_penalties(
 | |
|         int32_t penalty_last_n,
 | |
|         float penalty_repeat,
 | |
|         float penalty_freq,
 | |
|         float penalty_present) {
 | |
|     penalty_last_n = std::max(penalty_last_n, 0);
 | |
| 
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_penalties_i,
 | |
|         /* .ctx   = */ new llama_sampler_penalties {
 | |
|             /* .penalty_last_n  = */ penalty_last_n,
 | |
|             /* .penalty_repeat  = */ penalty_repeat,
 | |
|             /* .penalty_freq    = */ penalty_freq,
 | |
|             /* .penalty_present = */ penalty_present,
 | |
|             /* .prev            = */ ring_buffer<llama_token>(penalty_last_n),
 | |
|             /* .token_count     = */ {},
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // top-n-sigma
 | |
| 
 | |
| struct llama_sampler_top_n_sigma {
 | |
|     const float n;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "top-n-sigma";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->n <= 0.0f || cur_p->size <= 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // find max logit and calculate mean
 | |
|     float max = cur_p->data[0].logit;
 | |
|     float logits_sum = 0;
 | |
|     size_t valid_count = 0;
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         // Only count non-negative infinity values
 | |
|         if (cur_p->data[i].logit != -INFINITY) {
 | |
|             if (cur_p->data[i].logit > max) {
 | |
|                 max = cur_p->data[i].logit;
 | |
|             }
 | |
|             logits_sum += cur_p->data[i].logit;
 | |
|             valid_count++;
 | |
|         }
 | |
|     }
 | |
|     float mean = valid_count > 0 ? logits_sum/valid_count : 0;
 | |
| 
 | |
|     // calculate standard deviation
 | |
|     float acc = 0;
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         // Skip -infinity in std calculation
 | |
|         if (cur_p->data[i].logit != -INFINITY) {
 | |
|             acc += pow(cur_p->data[i].logit - mean, 2);
 | |
|         }
 | |
|     }
 | |
|     float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
 | |
| 
 | |
|     //apply mask
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         if (cur_p->data[i].logit < max - (ctx->n * std)) {
 | |
|             cur_p->data[i].logit = -INFINITY;
 | |
|         }
 | |
|     }
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
 | |
|     return llama_sampler_init_top_n_sigma(ctx->n);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_top_n_sigma *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
 | |
|     /* .name   = */ llama_sampler_top_n_sigma_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_top_n_sigma_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_top_n_sigma_clone,
 | |
|     /* .free   = */ llama_sampler_top_n_sigma_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_top_n_sigma_i,
 | |
|         /* .ctx   = */ new llama_sampler_top_n_sigma {
 | |
|             /* .n = */ n,
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // DRY
 | |
| 
 | |
| struct llama_sampler_dry {
 | |
|     int32_t total_context_size;
 | |
| 
 | |
|     const float   dry_multiplier;
 | |
|     const float   dry_base;
 | |
|     const int32_t dry_allowed_length;
 | |
|     const int32_t dry_penalty_last_n;
 | |
| 
 | |
|     std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers;
 | |
|     std::vector<int> dry_repeat_count;
 | |
|     std::unordered_map<llama_token, int> dry_max_token_repeat;
 | |
|     ring_buffer<llama_token> last_tokens;
 | |
| };
 | |
| 
 | |
| // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
 | |
| static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
 | |
|     for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
 | |
|         std::string word = vocab.detokenize({token_id}, true);
 | |
|         if (word.find(str) != std::string::npos) {
 | |
|             token_sequences.emplace(token_id, std::vector<llama_token>());
 | |
|         } else {
 | |
|             size_t word_len = word.size();
 | |
|             size_t str_len = str.size();
 | |
|             size_t pos = -1;
 | |
|             while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
 | |
|                 bool match = true;
 | |
|                 size_t i;
 | |
|                 for (i = 1; i < str_len && i + pos < word_len; ++i) {
 | |
|                     if (word[pos + i] != str[i]) {
 | |
|                         match = false;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (match) {
 | |
|                     std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
 | |
|                     if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
 | |
|                         tokenization.resize(max_tail_len);
 | |
|                     }
 | |
| 
 | |
|                     // Ensure we don't already have a duplicate matching tokenization
 | |
|                     auto its = token_sequences.equal_range(token_id);
 | |
|                     bool found = false;
 | |
|                     for (auto it = its.first; it != its.second; ++it) {
 | |
|                         if (tokenization == it->second) {
 | |
|                             found = true;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (!found) {
 | |
|                         token_sequences.emplace(token_id, tokenization);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "dry";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) {
 | |
|     auto * ctx = (llama_sampler_dry *) smpl->ctx;
 | |
|     if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ctx->last_tokens.push_back(token);
 | |
| }
 | |
| 
 | |
| // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
 | |
| static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_dry *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0);
 | |
|     int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size);
 | |
| 
 | |
|     if (last_n_repeat <= ctx->dry_allowed_length) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ctx->dry_repeat_count.assign(last_n_repeat, 0);
 | |
|     ctx->dry_max_token_repeat.clear();
 | |
| 
 | |
|     // Step 1: Look for restart sequences to limit the maximum repetition length.
 | |
|     // Work backwards through the context looking for any token that begins a restart sequence.
 | |
|     //
 | |
|     // The collection `restart_sequences` is a mapping from a "head" token to all "tail"
 | |
|     // sequences that together comprise a restart sequence. This allows us to quickly check
 | |
|     // whether each token is the head of a complete sequence. Most restart sequences are actually
 | |
|     // a single token, and for these the "tail" is an empty vector.
 | |
|     //
 | |
|     // If the token is a "head", test all restart sequences that begin with this token
 | |
|     // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
 | |
|     // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
 | |
|     // longest matching sequence (if any) is used to limit the maximum repetition length.
 | |
|     //
 | |
|     // Note that in the case case of a short sequence contained in a longer one, this might fail to
 | |
|     // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
 | |
|     // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
 | |
|     // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
 | |
|     //
 | |
|     // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
 | |
|     // have already clamped the maximum tail sequence length when generating `restart_sequences`.
 | |
|     // With clamping, this scan is O(N) in the context length.
 | |
| 
 | |
|     int rep_limit = last_n_repeat;
 | |
|     for (int i = 0; i < last_n_repeat; ++i) {
 | |
|         llama_token token = ctx->last_tokens.rat(i);
 | |
|         auto its = ctx->dry_processed_breakers.equal_range(token);
 | |
|         if (its.first == ctx->dry_processed_breakers.end()) {
 | |
|             continue;
 | |
|         }
 | |
|         int longest_match = -1;
 | |
|         for (auto it = its.first; it != its.second; ++it) {
 | |
|             // Note that (*it) does not contain the head character, so seq_len will be
 | |
|             // the restart sequence length minus 1.
 | |
|             // In the common case of a single-token restart sequence, (*it) will be empty
 | |
|             // and we will trivially match.
 | |
|             int seq_len = (int)it->second.size();
 | |
|             if (seq_len > longest_match && seq_len <= (int)i) {
 | |
|                 bool match = true;
 | |
|                 for (int offset = 0; offset < seq_len; ++offset) {
 | |
|                     // The -1 when indexing `last_tokens` is because we already matched the head.
 | |
|                     if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) {
 | |
|                         match = false;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (match) {
 | |
|                     longest_match = seq_len;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (longest_match >= 0) {
 | |
|             // We found a restart sequence starting `i` tokens from the end and continuing for
 | |
|             // `longest_match` tokens.
 | |
|             rep_limit = i - longest_match;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (rep_limit < ctx->dry_allowed_length) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
 | |
|     // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
 | |
|     // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
 | |
|     //
 | |
|     // This algorithm is not currently documented on Wikipedia, but there is a clear description here:
 | |
|     // https://ivanyu.me/blog/2014/10/15/z-algorithm/
 | |
|     //
 | |
|     // The code below is adapted from the public domain implementation by the same author here:
 | |
|     // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
 | |
|     //
 | |
|     // Example:
 | |
|     // Last N tokens: a b c c b c y a b c
 | |
|     // Repeat counts: 0 0 3 1 0 2 0 0 0 0
 | |
|     //                    ^
 | |
|     //   This `3` means that the last three tokens of the context (a b c) also appear here.
 | |
|     //
 | |
|     // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
 | |
|     // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
 | |
|     // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
 | |
|     // ensure that the inner while loops only examine each token in the context once as the outer
 | |
|     // for loop iterates over the context.
 | |
| 
 | |
|     {
 | |
|         const int last = last_n_repeat - 1;
 | |
|         int rt = 0, lt = 0;
 | |
| 
 | |
|         for (int k = 1; k < last_n_repeat; ++k) {
 | |
|             if (k > rt) {
 | |
|                 // If k is outside the current Z-box, do naive computation.
 | |
|                 int n = 0;
 | |
|                 while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) {
 | |
|                     ++n;
 | |
|                 }
 | |
|                 ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
 | |
|                 if (n > 0) {
 | |
|                     lt = k;
 | |
|                     rt = k + n - 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 // If k is inside the current Z-box, consider two cases.
 | |
| 
 | |
|                 int p = k - lt; // Pair index.
 | |
|                 int right_part_len = rt - k + 1;
 | |
| 
 | |
|                 if (ctx->dry_repeat_count[last - p] < right_part_len) {
 | |
|                     int n = std::min(ctx->dry_repeat_count[last - p], rep_limit);
 | |
|                     ctx->dry_repeat_count[last - k] = n;
 | |
|                 } else {
 | |
|                     int i = rt + 1;
 | |
|                     while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) {
 | |
|                         i += 1;
 | |
|                     }
 | |
| 
 | |
|                     int n = std::min(i - k, rep_limit);
 | |
|                     ctx->dry_repeat_count[last - k] = n;
 | |
|                     lt = k;
 | |
|                     rt = i - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
 | |
|     // that would be generated by emitting each new token that would extend a sequence.
 | |
|     //
 | |
|     // Following the same example as above:
 | |
|     // Last N tokens: a b c c b c y a b c
 | |
|     // Repeat counts: 0 0 3 1 0 2 0 0 0 0
 | |
|     //
 | |
|     // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
 | |
|     // c: 3 -> 4 (from `a b c` to `a b c c`)
 | |
|     // b: 1 -> 2 (from `c` to `c b`)
 | |
|     // y: 2 -> 3 (from `b c` to `b c y`)
 | |
| 
 | |
|     for (int i = 0; i < last_n_repeat - 1; ++i) {
 | |
|         int repeat_len = ctx->dry_repeat_count[i];
 | |
|         if (repeat_len >= ctx->dry_allowed_length) {
 | |
|             // This token ends a repeat, so the next token would continue one.
 | |
|             // By convention, the value of `repeat_len` only includes the tokens currently
 | |
|             // in the context, not the new token that would be added.
 | |
|             llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i);
 | |
|             // Track the maximum sequence ending in this token.
 | |
|             const auto& it = ctx->dry_max_token_repeat.find(token);
 | |
|             if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) {
 | |
|                 ctx->dry_max_token_repeat[token] = repeat_len;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.
 | |
| 
 | |
|     // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
 | |
|     // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
 | |
|     const float FLOAT_MAX_LOG = 88.7228391f;
 | |
|     int max_exponent = 0;
 | |
|     if (ctx->dry_base > 1.000001f) {
 | |
|         max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base);
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id);
 | |
|         if (af_kvp != ctx->dry_max_token_repeat.end()) {
 | |
|             // Check all sequence breakers starting with this token
 | |
|             auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id);
 | |
|             bool is_single_token_breaker = false;
 | |
| 
 | |
|             for (auto it = range.first; it != range.second; ++it) {
 | |
|                 if (it->second.empty()) {
 | |
|                     is_single_token_breaker = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Apply penalty only if it's not a single-token sequence breaker
 | |
|             if (!is_single_token_breaker) {
 | |
|                 int repeat_exp = af_kvp->second - ctx->dry_allowed_length;
 | |
|                 if (max_exponent > 0 && repeat_exp > max_exponent) {
 | |
|                     repeat_exp = max_exponent;
 | |
|                 }
 | |
|                 float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp);
 | |
|                 cur_p->data[i].logit -= penalty;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cur_p->sorted = false;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
 | |
|     auto * ctx = (llama_sampler_dry *) smpl->ctx;
 | |
|     ctx->last_tokens.clear();
 | |
|     ctx->dry_repeat_count.clear();
 | |
|     ctx->dry_max_token_repeat.clear();
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (llama_sampler_dry *) smpl->ctx;
 | |
| 
 | |
|     llama_vocab dummy_vocab;
 | |
| 
 | |
|     // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
 | |
|     auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
 | |
| 
 | |
|     // Copy the state, including the processed breakers
 | |
|     {
 | |
|         auto * result_ctx = (llama_sampler_dry *) result->ctx;
 | |
|         result_ctx->dry_processed_breakers = ctx->dry_processed_breakers;
 | |
|         result_ctx->dry_repeat_count = ctx->dry_repeat_count;
 | |
|         result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat;
 | |
|         result_ctx->last_tokens = ctx->last_tokens;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_sampler_dry_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_dry *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_dry_i = {
 | |
|     /* .name   = */ llama_sampler_dry_name,
 | |
|     /* .accept = */ llama_sampler_dry_accept,
 | |
|     /* .apply  = */ llama_sampler_dry_apply,
 | |
|     /* .reset  = */ llama_sampler_dry_reset,
 | |
|     /* .clone  = */ llama_sampler_dry_clone,
 | |
|     /* .free   = */ llama_sampler_dry_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
 | |
|     int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
 | |
|     std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
 | |
|     const int MAX_CHAR_LEN = 40;
 | |
|     const int MAX_SEQ_LEN = 20;
 | |
| 
 | |
|     const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);
 | |
| 
 | |
|     if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
 | |
|         // Process sequence breakers
 | |
|         for (size_t i = 0; i < num_breakers; ++i) {
 | |
|             if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) {
 | |
|                 LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             std::string sequence_break(seq_breakers[i]);
 | |
|             if (sequence_break.empty()) {
 | |
|                 LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n");
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (sequence_break.size() > MAX_CHAR_LEN) {
 | |
|                 LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN);
 | |
|                 sequence_break.resize(MAX_CHAR_LEN);
 | |
|             }
 | |
| 
 | |
|             get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_dry_i,
 | |
|         /* .ctx   = */ new llama_sampler_dry {
 | |
|             /* .total_context_size     = */ context_size,
 | |
|             /* .dry_multiplier         = */ dry_multiplier,
 | |
|             /* .dry_base               = */ dry_base,
 | |
|             /* .dry_allowed_length     = */ dry_allowed_length,
 | |
|             /* .dry_penalty_last_n     = */ dry_penalty_last_n,
 | |
|             /* .dry_processed_breakers = */ std::move(processed_breakers),
 | |
|             /* .dry_repeat_count       = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
 | |
|             /* .dry_max_token_repeat   = */ {},
 | |
|             /* .last_tokens            = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // wrapper for test-sampling.cpp
 | |
| struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
 | |
|     llama_vocab dummy_vocab;
 | |
|     auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
 | |
|     auto * ctx = (llama_sampler_dry *) result->ctx;
 | |
| 
 | |
|     // Process the token-based sequence breakers
 | |
|     ctx->dry_processed_breakers.clear();
 | |
|     if (seq_breakers.empty()) {
 | |
|         LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n");
 | |
|     } else {
 | |
|         for (const auto& breaker : seq_breakers) {
 | |
|             if (breaker.empty()) {
 | |
|                 LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n");
 | |
|                 continue;
 | |
|             }
 | |
|             llama_token head_token = breaker[0];
 | |
|             std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end());
 | |
|             ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens));
 | |
|         }
 | |
| 
 | |
|         if (ctx->dry_processed_breakers.empty()) {
 | |
|             LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // logit-bias
 | |
| 
 | |
| struct llama_sampler_logit_bias {
 | |
|     const int32_t n_vocab;
 | |
| 
 | |
|     const std::vector<llama_logit_bias> logit_bias;
 | |
| 
 | |
|     std::vector<llama_logit_bias> to_search;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "logit-bias";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
 | |
| 
 | |
|     if (ctx->logit_bias.empty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ctx->to_search.clear();
 | |
| 
 | |
|     // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
 | |
|     for (const auto & lb : ctx->logit_bias) {
 | |
|         if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
 | |
|             cur_p->data[lb.token].logit += lb.bias;
 | |
|         } else {
 | |
|             ctx->to_search.push_back(lb);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx->to_search.empty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // search for the remaining candidates that were not found in the previous step
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         for (const auto & lb : ctx->to_search) {
 | |
|             if (cur_p->data[i].id == lb.token) {
 | |
|                 cur_p->data[i].logit += lb.bias;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
 | |
|     return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
 | |
| }
 | |
| 
 | |
| static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_logit_bias *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_logit_bias_i = {
 | |
|     /* .name   = */ llama_sampler_logit_bias_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_logit_bias_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_logit_bias_clone,
 | |
|     /* .free   = */ llama_sampler_logit_bias_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_logit_bias(
 | |
|                          int32_t   n_vocab,
 | |
|                          int32_t   n_logit_bias,
 | |
|           const llama_logit_bias * logit_bias) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_logit_bias_i,
 | |
|         /* .ctx   = */ new llama_sampler_logit_bias {
 | |
|             /* .n_vocab    = */ n_vocab,
 | |
|             /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
 | |
|             /* .to_search  = */ {},
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // infill
 | |
| 
 | |
| //#define GGML_DEBUG_SAMPLER_INFILL
 | |
| 
 | |
| struct llama_sampler_infill {
 | |
|     const struct llama_vocab * vocab;
 | |
| 
 | |
|     std::vector<char> buf0;
 | |
|     std::vector<char> buf1;
 | |
| };
 | |
| 
 | |
| static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
 | |
|     return "infill";
 | |
| }
 | |
| 
 | |
| static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
 | |
|     auto * ctx = (llama_sampler_infill *) smpl->ctx;
 | |
| 
 | |
|     llama_sampler_softmax_impl(cur_p);
 | |
| 
 | |
| #if defined(GGML_DEBUG_SAMPLER_INFILL)
 | |
| #define LOG_DBG_CUR LLAMA_LOG_DEBUG
 | |
| #else
 | |
| #define LOG_DBG_CUR(...)
 | |
| #endif
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
 | |
|     }
 | |
| 
 | |
|     float p_txt_sum = 0.0f;
 | |
|     float p_eog_sum = 0.0f;
 | |
| 
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         if (ctx->vocab->is_eog(cur_p->data[i].id)) {
 | |
|             p_eog_sum += cur_p->data[i].p;
 | |
|         } else {
 | |
|             p_txt_sum += cur_p->data[i].p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);
 | |
| 
 | |
|     LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);
 | |
| 
 | |
|     if (3*p_eog_sum*cur_p->size > p_txt_sum) {
 | |
|         LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);
 | |
| 
 | |
|         // keep just the EOG tokens
 | |
|         const auto size_org = cur_p->size;
 | |
| 
 | |
|         cur_p->size = 0;
 | |
| 
 | |
|         float p_sum = 0.0f;
 | |
| 
 | |
|         for (size_t i = 0; i < size_org; ++i) {
 | |
|             if (ctx->vocab->is_eog(cur_p->data[i].id)) {
 | |
|                 p_sum += cur_p->data[i].p;
 | |
| 
 | |
|                 cur_p->data[cur_p->size++] = cur_p->data[i];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // normalize probs
 | |
|         for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|             cur_p->data[i].p /= p_sum;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t n_combined = 0; GGML_UNUSED(n_combined);
 | |
| 
 | |
|     // combine tokens with common prefix
 | |
|     for (size_t i0 = 0; i0 < cur_p->size; ++i0) {
 | |
|         for (size_t i1 = 0; i1 < cur_p->size; ++i1) {
 | |
|             if (cur_p->data[i0].logit == -INFINITY) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
 | |
|             if (len0 < 0) {
 | |
|                 ctx->buf0.resize(len0);
 | |
|                 len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
 | |
|                 assert(len0 > 0);
 | |
|             }
 | |
| 
 | |
|             int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
 | |
|             if (len1 < 0) {
 | |
|                 ctx->buf1.resize(len1);
 | |
|                 len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
 | |
|                 assert(len1 > 0);
 | |
|             }
 | |
| 
 | |
|             // token i0 is a prefix of token i1
 | |
|             if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) {
 | |
|                 int dst = i0;
 | |
|                 int src = i1;
 | |
| 
 | |
|                 // merge into the token with higher probability
 | |
|                 if (cur_p->data[i1].p > cur_p->data[i0].p) {
 | |
|                     std::swap(dst, src);
 | |
|                 }
 | |
| 
 | |
|                 cur_p->data[dst].p += cur_p->data[src].p;
 | |
|                 cur_p->data[src].logit = -INFINITY;
 | |
|                 cur_p->data[src].p     = 0.0f;
 | |
| 
 | |
|                 n_combined++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t n_non_eog = 0;
 | |
| 
 | |
|     size_t size_org = cur_p->size;
 | |
| 
 | |
|     float p_sum = 0.0f;
 | |
|     float thold = 0.2f;
 | |
| 
 | |
|     cur_p->size = 0;
 | |
| 
 | |
|     LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
 | |
| 
 | |
|     for (size_t i = 0; i < size_org; ++i) {
 | |
|         const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
 | |
| 
 | |
|         if (cur_p->data[i].p < thold && !is_eog) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (!is_eog) {
 | |
|             ++n_non_eog;
 | |
|         }
 | |
| 
 | |
|         p_sum += cur_p->data[i].p;
 | |
| 
 | |
|         // keep this token
 | |
|         cur_p->data[cur_p->size++] = cur_p->data[i];
 | |
|     }
 | |
| 
 | |
|     LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);
 | |
| 
 | |
|     // if no non-EOG tokens are left -> reduce cur_p to single EOT token
 | |
|     if (n_non_eog == 0) {
 | |
|         cur_p->size = 1;
 | |
|         cur_p->data[0].id = ctx->vocab->token_eot();
 | |
|         cur_p->data[0].logit = 1.0f;
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // normalize probs
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         cur_p->data[i].p /= p_sum;
 | |
| 
 | |
|         LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
 | |
|     }
 | |
| 
 | |
|     size_org = cur_p->size;
 | |
|     p_sum = 0.0f;
 | |
|     thold = 1.0/(n_non_eog + 1);
 | |
| 
 | |
|     cur_p->size = 0;
 | |
| 
 | |
|     LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
 | |
| 
 | |
|     for (size_t i = 0; i < size_org; ++i) {
 | |
|         const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
 | |
| 
 | |
|         if (cur_p->data[i].p < thold && !is_eog) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         p_sum += cur_p->data[i].p;
 | |
| 
 | |
|         cur_p->data[cur_p->size++] = cur_p->data[i];
 | |
|     }
 | |
| 
 | |
|     // normalize probs
 | |
|     for (size_t i = 0; i < cur_p->size; ++i) {
 | |
|         cur_p->data[i].p /= p_sum;
 | |
| 
 | |
|         LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
 | |
|     }
 | |
| 
 | |
| #undef LOG_DBG_CUR
 | |
| }
 | |
| 
 | |
| static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
 | |
|     const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
 | |
|     return llama_sampler_init_infill(ctx->vocab);
 | |
| }
 | |
| 
 | |
| static void llama_sampler_infill_free(struct llama_sampler * smpl) {
 | |
|     delete (llama_sampler_infill *) smpl->ctx;
 | |
| }
 | |
| 
 | |
| static struct llama_sampler_i llama_sampler_infill_i = {
 | |
|     /* .name   = */ llama_sampler_infill_name,
 | |
|     /* .accept = */ nullptr,
 | |
|     /* .apply  = */ llama_sampler_infill_apply,
 | |
|     /* .reset  = */ nullptr,
 | |
|     /* .clone  = */ llama_sampler_infill_clone,
 | |
|     /* .free   = */ llama_sampler_infill_free,
 | |
| };
 | |
| 
 | |
| struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
 | |
|     return llama_sampler_init(
 | |
|         /* .iface = */ &llama_sampler_infill_i,
 | |
|         /* .ctx   = */ new llama_sampler_infill {
 | |
|             /* .vocab = */ vocab,
 | |
|             /* .buf0  = */ std::vector<char>(512),
 | |
|             /* .buf1  = */ std::vector<char>(512),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| // utils
 | |
| 
 | |
| uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
 | |
|     if (smpl->iface == &llama_sampler_dist_i) {
 | |
|         return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
 | |
|     }
 | |
| 
 | |
|     if (smpl->iface == &llama_sampler_mirostat_i) {
 | |
|         return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
 | |
|     }
 | |
| 
 | |
|     if (smpl->iface == &llama_sampler_mirostat_v2_i) {
 | |
|         return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
 | |
|     }
 | |
| 
 | |
|     if (smpl->iface == &llama_sampler_chain_i) {
 | |
|         const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
 | |
|         for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
 | |
|             const uint32_t seed = llama_sampler_get_seed(*it);
 | |
|             if (seed != LLAMA_DEFAULT_SEED) {
 | |
|                 return seed;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return LLAMA_DEFAULT_SEED;
 | |
| }
 | |
| 
 | |
| // perf
 | |
| 
 | |
| struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
 | |
|     struct llama_perf_sampler_data data = {};
 | |
| 
 | |
|     if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
 | |
|         GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
 | |
|     }
 | |
| 
 | |
|     const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
 | |
| 
 | |
|     data.t_sample_ms = 1e-3 * ctx->t_sample_us;
 | |
|     data.n_sample    = std::max(0, ctx->n_sample);
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| void llama_perf_sampler_print(const struct llama_sampler * chain) {
 | |
|     const auto data = llama_perf_sampler(chain);
 | |
| 
 | |
|     LLAMA_LOG_INFO("%s:    sampling time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
 | |
| }
 | |
| 
 | |
| void llama_perf_sampler_reset(struct llama_sampler * chain) {
 | |
|     if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
 | |
|         GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
 | |
|     }
 | |
| 
 | |
|     auto * ctx = (struct llama_sampler_chain *) chain->ctx;
 | |
| 
 | |
|     ctx->t_sample_us = ctx->n_sample = 0;
 | |
| }
 |