mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "mtmd.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cinttypes>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define LOG_INF(...) fprintf(stdout, __VA_ARGS__)
 | 
						|
#define LOG_ERR(...) fprintf(stderr, __VA_ARGS__)
 | 
						|
 | 
						|
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
 | 
						|
    size_t n_tokens = 0;
 | 
						|
    for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
 | 
						|
        auto chunk = mtmd_input_chunks_get(chunks, i);
 | 
						|
        auto chunk_type = mtmd_input_chunk_get_type(chunk);
 | 
						|
        if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
            size_t n_tokens_text;
 | 
						|
            mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
 | 
						|
            n_tokens += n_tokens_text;
 | 
						|
        } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
            auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
 | 
						|
            n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
 | 
						|
        } else {
 | 
						|
            GGML_ASSERT(false && "chunk type not supported");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return n_tokens;
 | 
						|
}
 | 
						|
 | 
						|
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
 | 
						|
    llama_pos n_pos = 0;
 | 
						|
    for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
 | 
						|
        auto chunk = mtmd_input_chunks_get(chunks, i);
 | 
						|
        auto chunk_type = mtmd_input_chunk_get_type(chunk);
 | 
						|
        if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
            size_t n_tokens_text;
 | 
						|
            mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
 | 
						|
            n_pos += n_tokens_text;
 | 
						|
        } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
            auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
 | 
						|
            n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
 | 
						|
        } else {
 | 
						|
            GGML_ASSERT(false && "chunk type not supported");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return n_pos;
 | 
						|
}
 | 
						|
 | 
						|
// helper struct to make working with embd batch easier
 | 
						|
// note: this will be removed after llama_batch_ext refactoring
 | 
						|
struct decode_embd_batch {
 | 
						|
    int n_pos_per_embd;
 | 
						|
    int n_mmproj_embd;
 | 
						|
    std::vector<llama_pos>      pos;
 | 
						|
    std::vector<llama_pos>      pos_view; // used by mrope
 | 
						|
    std::vector<int32_t>        n_seq_id;
 | 
						|
    std::vector<llama_seq_id>   seq_id_0;
 | 
						|
    std::vector<llama_seq_id *> seq_ids;
 | 
						|
    std::vector<int8_t>         logits;
 | 
						|
    llama_batch batch;
 | 
						|
    decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
 | 
						|
        pos     .resize(n_tokens * n_pos_per_embd);
 | 
						|
        n_seq_id.resize(n_tokens);
 | 
						|
        seq_ids .resize(n_tokens + 1);
 | 
						|
        logits  .resize(n_tokens);
 | 
						|
        seq_id_0.resize(1);
 | 
						|
        seq_ids [n_tokens] = nullptr;
 | 
						|
        batch = {
 | 
						|
            /*n_tokens       =*/ n_tokens,
 | 
						|
            /*tokens         =*/ nullptr,
 | 
						|
            /*embd           =*/ embd,
 | 
						|
            /*pos            =*/ pos.data(),
 | 
						|
            /*n_seq_id       =*/ n_seq_id.data(),
 | 
						|
            /*seq_id         =*/ seq_ids.data(),
 | 
						|
            /*logits         =*/ logits.data(),
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
    void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
 | 
						|
        seq_id_0[0] = seq_id;
 | 
						|
        for (int i = 0; i < batch.n_tokens; i++) {
 | 
						|
            batch.pos     [i] = pos_0 + i;
 | 
						|
            batch.n_seq_id[i] = 1;
 | 
						|
            batch.seq_id  [i] = seq_id_0.data();
 | 
						|
            batch.logits  [i] = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
 | 
						|
        GGML_ASSERT(n_pos_per_embd == 4);
 | 
						|
        seq_id_0[0] = seq_id;
 | 
						|
        for (int y = 0; y < ny; y++) {
 | 
						|
            for (int x = 0; x < nx; x++) {
 | 
						|
                int i = y * nx + x;
 | 
						|
                pos[i                     ] = pos_0;
 | 
						|
                pos[i + batch.n_tokens    ] = pos_0 + y;
 | 
						|
                pos[i + batch.n_tokens * 2] = pos_0 + x;
 | 
						|
                pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (int i = 0; i < batch.n_tokens; i++) {
 | 
						|
            batch.n_seq_id[i] = 1;
 | 
						|
            batch.seq_id  [i] = seq_id_0.data();
 | 
						|
            batch.logits  [i] = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    llama_batch get_view(int offset, int n_tokens) {
 | 
						|
        llama_pos * pos_ptr;
 | 
						|
        pos_view.clear();
 | 
						|
        pos_view.reserve(n_tokens * n_pos_per_embd);
 | 
						|
        if (n_pos_per_embd > 1) {
 | 
						|
            // mrope
 | 
						|
            // for example, with layout of src: 1234...1234...1234...1234...
 | 
						|
            //       offset 2 will give us dst: 34...34...34...34...
 | 
						|
            for (int i = 0; i < n_pos_per_embd; i++) {
 | 
						|
                // assume n_tokens is less than or equal to batch.n_tokens
 | 
						|
                // batch.n_tokens is number of **total** tokens
 | 
						|
                // n_tokens is number of viewed token
 | 
						|
                size_t src_idx = i * batch.n_tokens + offset;
 | 
						|
                pos_view.insert(pos_view.end(),
 | 
						|
                    pos.data() + src_idx,
 | 
						|
                    pos.data() + src_idx + n_tokens);
 | 
						|
            }
 | 
						|
            pos_ptr = pos_view.data();
 | 
						|
        } else {
 | 
						|
            // normal
 | 
						|
            pos_ptr = pos.data() + offset;
 | 
						|
        }
 | 
						|
        return {
 | 
						|
            /*n_tokens       =*/ n_tokens,
 | 
						|
            /*tokens         =*/ nullptr,
 | 
						|
            /*embd           =*/ batch.embd     + offset * n_mmproj_embd,
 | 
						|
            /*pos            =*/ pos_ptr,
 | 
						|
            /*n_seq_id       =*/ batch.n_seq_id + offset,
 | 
						|
            /*seq_id         =*/ batch.seq_id   + offset,
 | 
						|
            /*logits         =*/ batch.logits   + offset,
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// Helper function for decoding an image whose embeddings have already been calculated
 | 
						|
int32_t mtmd_helper_decode_image_chunk(
 | 
						|
        mtmd_context * ctx,
 | 
						|
        struct llama_context * lctx,
 | 
						|
        const mtmd_input_chunk * chunk,
 | 
						|
        float * encoded_embd,
 | 
						|
        llama_pos n_past,
 | 
						|
        llama_seq_id seq_id,
 | 
						|
        int32_t n_batch,
 | 
						|
        llama_pos * new_n_past) {
 | 
						|
    if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
 | 
						|
    if (!image_tokens) {
 | 
						|
        LOG_ERR("failed to decode image chunk: image tokens are null\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    const llama_model * model = llama_get_model(lctx);
 | 
						|
    int n_mmproj_embd = llama_model_n_embd(model);
 | 
						|
    int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
 | 
						|
 | 
						|
    int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
 | 
						|
    int32_t i_batch = 0;
 | 
						|
    int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
 | 
						|
    decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
 | 
						|
 | 
						|
    const int nx = mtmd_image_tokens_get_nx(image_tokens);
 | 
						|
    const int ny = mtmd_image_tokens_get_ny(image_tokens);
 | 
						|
 | 
						|
    if (mtmd_decode_use_mrope(ctx)) {
 | 
						|
        batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
 | 
						|
    } else {
 | 
						|
        batch_embd.set_position_normal(n_past, seq_id);
 | 
						|
    }
 | 
						|
 | 
						|
    if (mtmd_decode_use_non_causal(ctx)) {
 | 
						|
        llama_set_causal_attn(lctx, false);
 | 
						|
        // TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
 | 
						|
    }
 | 
						|
 | 
						|
    while (i_batch < n_img_batches) { // split into batches
 | 
						|
        int pos_offset = i_batch*n_batch;
 | 
						|
        int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
 | 
						|
        llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
 | 
						|
 | 
						|
        LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
 | 
						|
 | 
						|
        int64_t t1 = ggml_time_ms();
 | 
						|
        int32_t ret = llama_decode(lctx, batch_embd_view);
 | 
						|
        if (ret != 0) {
 | 
						|
            LOG_ERR("failed to decode image\n");
 | 
						|
            llama_set_causal_attn(lctx, true); // restore causal attn
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
 | 
						|
 | 
						|
        i_batch++;
 | 
						|
    }
 | 
						|
 | 
						|
    n_past += mtmd_image_tokens_get_n_pos(image_tokens);
 | 
						|
    *new_n_past = n_past;
 | 
						|
 | 
						|
    if (mtmd_decode_use_non_causal(ctx)) {
 | 
						|
        llama_set_causal_attn(lctx, true);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
 | 
						|
        struct llama_context * lctx,
 | 
						|
        const mtmd_input_chunk * chunk,
 | 
						|
        llama_pos n_past,
 | 
						|
        llama_seq_id seq_id,
 | 
						|
        int32_t n_batch,
 | 
						|
        bool logits_last,
 | 
						|
        llama_pos * new_n_past) {
 | 
						|
    int32_t ret;
 | 
						|
    llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
 | 
						|
    auto chunk_type = mtmd_input_chunk_get_type(chunk);
 | 
						|
 | 
						|
    if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
        size_t n_tokens;
 | 
						|
        const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
 | 
						|
        // LOG_INF("decoding text chunk, n_tokens = %zu\n", n_tokens);
 | 
						|
        size_t i = 0;
 | 
						|
        while (i < n_tokens) { // split into batches
 | 
						|
            text_batch.n_tokens = 0; // clear the batch
 | 
						|
            for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
 | 
						|
                text_batch.n_tokens++;
 | 
						|
                text_batch.token   [i]    = tokens[i];
 | 
						|
                text_batch.pos     [i]    = n_past++;
 | 
						|
                text_batch.n_seq_id[i]    = 1;
 | 
						|
                text_batch.seq_id  [i][0] = seq_id;
 | 
						|
                text_batch.logits  [i]    = false;
 | 
						|
            }
 | 
						|
            bool is_last_token = (i == n_tokens);
 | 
						|
            if (logits_last && is_last_token) {
 | 
						|
                text_batch.logits[text_batch.n_tokens - 1] = true;
 | 
						|
            }
 | 
						|
            ret = llama_decode(lctx, text_batch);
 | 
						|
            if (ret != 0) {
 | 
						|
                LOG_ERR("failed to decode text\n");
 | 
						|
                llama_batch_free(text_batch);
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
            *new_n_past += text_batch.n_tokens;
 | 
						|
        }
 | 
						|
 | 
						|
    } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
 | 
						|
        int64_t t0 = ggml_time_ms();
 | 
						|
 | 
						|
        LOG_INF("encoding image or slice...\n");
 | 
						|
 | 
						|
        ret = mtmd_encode(ctx, image_tokens);
 | 
						|
        if (ret != 0) {
 | 
						|
            LOG_ERR("failed to encode image\n");
 | 
						|
            llama_batch_free(text_batch);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
 | 
						|
 | 
						|
        float * embd = mtmd_get_output_embd(ctx);
 | 
						|
        ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
 | 
						|
        if (ret != 0) {
 | 
						|
            LOG_ERR("failed to decode image\n");
 | 
						|
            llama_batch_free(text_batch);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("chunk type not supported");
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
 | 
						|
                                struct llama_context * lctx,
 | 
						|
                                const mtmd_input_chunks * chunks,
 | 
						|
                                llama_pos n_past,
 | 
						|
                                llama_seq_id seq_id,
 | 
						|
                                int32_t n_batch,
 | 
						|
                                bool logits_last,
 | 
						|
                                llama_pos * new_n_past) {
 | 
						|
    size_t n_chunks = mtmd_input_chunks_size(chunks);
 | 
						|
    if (n_chunks == 0) {
 | 
						|
        LOG_ERR("no chunks to eval\n");
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (size_t i = 0; i < n_chunks; i++) {
 | 
						|
        bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
 | 
						|
        auto chunk = mtmd_input_chunks_get(chunks, i);
 | 
						|
 | 
						|
        int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
 | 
						|
        if (res != 0) {
 | 
						|
            LOG_ERR("failed to eval chunk %zu\n", i);
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        *new_n_past = n_past;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |