mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* Copy minja from58f0ca6dd7* Add --jinja and --chat-template-file flags * Add missing <optional> include * Avoid print in get_hf_chat_template.py * No designated initializers yet * Try and work around msvc++ non-macro max resolution quirk * Update test_chat_completion.py * Wire LLM_KV_TOKENIZER_CHAT_TEMPLATE_N in llama_model_chat_template * Refactor test-chat-template * Test templates w/ minja * Fix deprecation * Add --jinja to llama-run * Update common_chat_format_example to use minja template wrapper * Test chat_template in e2e test * Update utils.py * Update test_chat_completion.py * Update run.cpp * Update arg.cpp * Refactor common_chat_* functions to accept minja template + use_jinja option * Attempt to fix linkage of LLAMA_CHATML_TEMPLATE * Revert LLAMA_CHATML_TEMPLATE refactor * Normalize newlines in test-chat-templates for windows tests * Forward decl minja::chat_template to avoid eager json dep * Flush stdout in chat template before potential crash * Fix copy elision warning * Rm unused optional include * Add missing optional include to server.cpp * Disable jinja test that has a cryptic windows failure * minja: fix vigogne (https://github.com/google/minja/pull/22) * Apply suggestions from code review Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Finish suggested renamings * Move chat_templates inside server_context + remove mutex * Update --chat-template-file w/ recent change to --chat-template * Refactor chat template validation * Guard against missing eos/bos tokens (null token otherwise throws in llama_vocab::impl::token_get_attr) * Warn against missing eos / bos tokens when jinja template references them * rename: common_chat_template[s] * reinstate assert on chat_templates.template_default * Update minja tob8437df626* Update minja to https://github.com/google/minja/pull/25 * Update minja from https://github.com/google/minja/pull/27 * rm unused optional header --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			207 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "llama.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <iostream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static void print_usage(int, char ** argv) {
 | 
						|
    printf("\nexample usage:\n");
 | 
						|
    printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    std::string model_path;
 | 
						|
    int ngl = 99;
 | 
						|
    int n_ctx = 2048;
 | 
						|
 | 
						|
    // parse command line arguments
 | 
						|
    for (int i = 1; i < argc; i++) {
 | 
						|
        try {
 | 
						|
            if (strcmp(argv[i], "-m") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    model_path = argv[++i];
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else if (strcmp(argv[i], "-c") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    n_ctx = std::stoi(argv[++i]);
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else if (strcmp(argv[i], "-ngl") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    ngl = std::stoi(argv[++i]);
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                print_usage(argc, argv);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
        } catch (std::exception & e) {
 | 
						|
            fprintf(stderr, "error: %s\n", e.what());
 | 
						|
            print_usage(argc, argv);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (model_path.empty()) {
 | 
						|
        print_usage(argc, argv);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // only print errors
 | 
						|
    llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
 | 
						|
        if (level >= GGML_LOG_LEVEL_ERROR) {
 | 
						|
            fprintf(stderr, "%s", text);
 | 
						|
        }
 | 
						|
    }, nullptr);
 | 
						|
 | 
						|
    // load dynamic backends
 | 
						|
    ggml_backend_load_all();
 | 
						|
 | 
						|
    // initialize the model
 | 
						|
    llama_model_params model_params = llama_model_default_params();
 | 
						|
    model_params.n_gpu_layers = ngl;
 | 
						|
 | 
						|
    llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
 | 
						|
    if (!model) {
 | 
						|
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const llama_vocab * vocab = llama_model_get_vocab(model);
 | 
						|
 | 
						|
    // initialize the context
 | 
						|
    llama_context_params ctx_params = llama_context_default_params();
 | 
						|
    ctx_params.n_ctx = n_ctx;
 | 
						|
    ctx_params.n_batch = n_ctx;
 | 
						|
 | 
						|
    llama_context * ctx = llama_init_from_model(model, ctx_params);
 | 
						|
    if (!ctx) {
 | 
						|
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize the sampler
 | 
						|
    llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
 | 
						|
 | 
						|
    // helper function to evaluate a prompt and generate a response
 | 
						|
    auto generate = [&](const std::string & prompt) {
 | 
						|
        std::string response;
 | 
						|
 | 
						|
        const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
 | 
						|
 | 
						|
        // tokenize the prompt
 | 
						|
        const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
 | 
						|
        std::vector<llama_token> prompt_tokens(n_prompt_tokens);
 | 
						|
        if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
 | 
						|
            GGML_ABORT("failed to tokenize the prompt\n");
 | 
						|
        }
 | 
						|
 | 
						|
        // prepare a batch for the prompt
 | 
						|
        llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
 | 
						|
        llama_token new_token_id;
 | 
						|
        while (true) {
 | 
						|
            // check if we have enough space in the context to evaluate this batch
 | 
						|
            int n_ctx = llama_n_ctx(ctx);
 | 
						|
            int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
 | 
						|
            if (n_ctx_used + batch.n_tokens > n_ctx) {
 | 
						|
                printf("\033[0m\n");
 | 
						|
                fprintf(stderr, "context size exceeded\n");
 | 
						|
                exit(0);
 | 
						|
            }
 | 
						|
 | 
						|
            if (llama_decode(ctx, batch)) {
 | 
						|
                GGML_ABORT("failed to decode\n");
 | 
						|
            }
 | 
						|
 | 
						|
            // sample the next token
 | 
						|
            new_token_id = llama_sampler_sample(smpl, ctx, -1);
 | 
						|
 | 
						|
            // is it an end of generation?
 | 
						|
            if (llama_vocab_is_eog(vocab, new_token_id)) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            // convert the token to a string, print it and add it to the response
 | 
						|
            char buf[256];
 | 
						|
            int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
 | 
						|
            if (n < 0) {
 | 
						|
                GGML_ABORT("failed to convert token to piece\n");
 | 
						|
            }
 | 
						|
            std::string piece(buf, n);
 | 
						|
            printf("%s", piece.c_str());
 | 
						|
            fflush(stdout);
 | 
						|
            response += piece;
 | 
						|
 | 
						|
            // prepare the next batch with the sampled token
 | 
						|
            batch = llama_batch_get_one(&new_token_id, 1);
 | 
						|
        }
 | 
						|
 | 
						|
        return response;
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<llama_chat_message> messages;
 | 
						|
    std::vector<char> formatted(llama_n_ctx(ctx));
 | 
						|
    int prev_len = 0;
 | 
						|
    while (true) {
 | 
						|
        // get user input
 | 
						|
        printf("\033[32m> \033[0m");
 | 
						|
        std::string user;
 | 
						|
        std::getline(std::cin, user);
 | 
						|
 | 
						|
        if (user.empty()) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
 | 
						|
 | 
						|
        // add the user input to the message list and format it
 | 
						|
        messages.push_back({"user", strdup(user.c_str())});
 | 
						|
        int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
 | 
						|
        if (new_len > (int)formatted.size()) {
 | 
						|
            formatted.resize(new_len);
 | 
						|
            new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
 | 
						|
        }
 | 
						|
        if (new_len < 0) {
 | 
						|
            fprintf(stderr, "failed to apply the chat template\n");
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        // remove previous messages to obtain the prompt to generate the response
 | 
						|
        std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
 | 
						|
 | 
						|
        // generate a response
 | 
						|
        printf("\033[33m");
 | 
						|
        std::string response = generate(prompt);
 | 
						|
        printf("\n\033[0m");
 | 
						|
 | 
						|
        // add the response to the messages
 | 
						|
        messages.push_back({"assistant", strdup(response.c_str())});
 | 
						|
        prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
 | 
						|
        if (prev_len < 0) {
 | 
						|
            fprintf(stderr, "failed to apply the chat template\n");
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // free resources
 | 
						|
    for (auto & msg : messages) {
 | 
						|
        free(const_cast<char *>(msg.content));
 | 
						|
    }
 | 
						|
    llama_sampler_free(smpl);
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_model_free(model);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |