mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 e7e4df031b
			
		
	
	e7e4df031b
	
	
	
		
			
			* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
		
			
				
	
	
		
			251 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| // mutates the input string
 | |
| static std::vector<int> parse_list(char * p) {
 | |
|     std::vector<int> ret;
 | |
| 
 | |
|     char * q = p;
 | |
| 
 | |
|     while (*p) {
 | |
|         if (*p == ',') {
 | |
|             *p = '\0';
 | |
|             ret.push_back(std::atoi(q));
 | |
|             q = p + 1;
 | |
|         }
 | |
| 
 | |
|         ++p;
 | |
|     }
 | |
| 
 | |
|     ret.push_back(std::atoi(q));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (argc == 1 || argv[1][0] == '-') {
 | |
|         printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
 | |
|         printf("  <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
 | |
|         printf("  example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     int n_kv_max     = 2048;
 | |
|     int is_pp_shared = 0;
 | |
|     int n_gpu_layers = 0;
 | |
|     int mmq          = 0;
 | |
| 
 | |
|     std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
 | |
|     std::vector<int> n_tg = { 128, 256, };
 | |
|     std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
 | |
|     //std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
 | |
| 
 | |
|     if (argc >= 2) {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         n_kv_max = std::atoi(argv[2]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 4) {
 | |
|         is_pp_shared = std::atoi(argv[3]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 5) {
 | |
|         n_gpu_layers = std::atoi(argv[4]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 6) {
 | |
|         mmq = std::atoi(argv[5]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 7) {
 | |
|         n_pp = parse_list(argv[6]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 8) {
 | |
|         n_tg = parse_list(argv[7]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 9) {
 | |
|         n_pl = parse_list(argv[8]);
 | |
|     }
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
| 
 | |
|     const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
 | |
| 
 | |
|     model_params.n_gpu_layers = n_gpu_layers;
 | |
|     model_params.tensor_split = t_split.data();
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
| 
 | |
|     ctx_params.seed      = 1234;
 | |
|     ctx_params.n_ctx     = n_kv_max;
 | |
|     ctx_params.n_batch   = 512;
 | |
|     ctx_params.mul_mat_q = mmq;
 | |
| 
 | |
|     ctx_params.n_threads       = params.n_threads;
 | |
|     ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
 | |
| 
 | |
|     // decode in batches of ctx_params.n_batch tokens
 | |
|     auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
 | |
|         for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
 | |
|             const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
 | |
| 
 | |
|             llama_batch batch_view = {
 | |
|                 n_tokens,
 | |
|                 batch.token    + i,
 | |
|                 nullptr,
 | |
|                 batch.pos      + i,
 | |
|                 batch.n_seq_id + i,
 | |
|                 batch.seq_id   + i,
 | |
|                 batch.logits   + i,
 | |
|                 0, 0, 0, // unused
 | |
|             };
 | |
| 
 | |
|             const int ret = llama_decode(ctx, batch_view);
 | |
|             if (ret != 0) {
 | |
|                 LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     // warm up
 | |
|     {
 | |
|         for (int i = 0; i < 16; ++i) {
 | |
|             llama_batch_add(batch, 0, i, { 0 }, false);
 | |
|         }
 | |
| 
 | |
|         if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|             LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP",     "TG",     "B",    "N_KV",     "T_PP s",   "S_PP t/s", "T_TG s",   "S_TG t/s", "T s",      "S t/s");
 | |
|     LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
 | |
| 
 | |
|     for (        int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
 | |
|         for (    int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
 | |
|             for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
 | |
|                 const int pp = n_pp[i_pp];
 | |
|                 const int tg = n_tg[i_tg];
 | |
|                 const int pl = n_pl[i_pl];
 | |
| 
 | |
|                 const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
 | |
| 
 | |
|                 if (n_ctx_req > n_kv_max) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 llama_batch_clear(batch);
 | |
| 
 | |
|                 const int n_tokens = is_pp_shared ? pp : pl*pp;
 | |
| 
 | |
|                 for (int i = 0; i < n_tokens; ++i) {
 | |
|                     llama_batch_add(batch, 0, i, { 0 }, false);
 | |
|                 }
 | |
|                 batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|                 const auto t_pp_start = ggml_time_us();
 | |
| 
 | |
|                 llama_kv_cache_clear(ctx);
 | |
| 
 | |
|                 if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                     LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 if (is_pp_shared) {
 | |
|                     for (int32_t i = 1; i < pl; ++i) {
 | |
|                         llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_pp_end = ggml_time_us();
 | |
| 
 | |
|                 const auto t_tg_start = ggml_time_us();
 | |
| 
 | |
|                 for (int i = 0; i < tg; ++i) {
 | |
|                     llama_batch_clear(batch);
 | |
| 
 | |
|                     for (int j = 0; j < pl; ++j) {
 | |
|                         llama_batch_add(batch, 0, pp + i, { j }, true);
 | |
|                     }
 | |
| 
 | |
|                     if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                         return 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_tg_end = ggml_time_us();
 | |
| 
 | |
|                 const int32_t n_kv = n_ctx_req;
 | |
| 
 | |
|                 const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
 | |
|                 const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
 | |
|                 const float t    = t_pp + t_tg;
 | |
| 
 | |
|                 const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
 | |
|                 const float speed_tg = pl*tg / t_tg;
 | |
|                 const float speed    = n_kv / t;
 | |
| 
 | |
|                 LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |