Files
llama.cpp/src/llama-graph.h
2025-02-28 18:01:25 +02:00

259 lines
7.5 KiB
C++

#pragma once
#include <cstdint>
#include <vector>
#include <memory>
// note: do not add high-level objects here, such as llama_context, llama_kv_cache, etc.
// not sure about llama_batch/llama_sbatch yet
struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;
struct ggml_backend_buffer;
struct llama_ubatch;
enum llama_graph_type {
LLAMA_GRAPH_TYPE_DEFAULT,
LLAMA_GRAPH_TYPE_ENCODER,
LLAMA_GRAPH_TYPE_DECODER,
};
//
// llama_graph_input
//
class llama_graph_input_i {
public:
virtual ~llama_graph_input_i() = default;
virtual void set_input(const llama_ubatch * ubatch) = 0;
};
using llama_graph_input_ptr = std::shared_ptr<llama_graph_input_i>;
class llama_graph_input_attn_i : public llama_graph_input_i {
public:
virtual ~llama_graph_input_attn_i() = default;
virtual ggml_tensor * get_kq_mask();
virtual ggml_tensor * get_kq_mask_swa();
virtual ggml_tensor * get_kq_mask_cross();
};
using llama_graph_input_attn_ptr = std::shared_ptr<llama_graph_input_attn_i>;
//
// llama_graph_result
//
class llama_graph_result_i {
public:
virtual ~llama_graph_result_i() = default;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
virtual void set_inputs(const llama_ubatch * ubatch) = 0;
};
using llama_graph_result_ptr = std::unique_ptr<llama_graph_result_i>;
class llama_graph_result : public llama_graph_result_i {
public:
llama_graph_result() = default;
virtual ~llama_graph_result() = default;
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
void set_inputs(const llama_ubatch * ubatch) override {
for (auto & input : inputs) {
input->set_input(ubatch);
}
}
void add_input(llama_graph_input_ptr && input) {
inputs.emplace_back(std::move(input));
}
// important graph nodes
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
std::vector<llama_graph_input_ptr> inputs;
};
//
// llama_graph
//
// TODO: can become more granular in the future
// TODO: move all methods that do not require things from llama_context to llm_build_context
class llama_graph_i {
public:
llama_graph_i(llama_graph_type type);
virtual ~llama_graph_i() = default;
llama_graph_type get_type() const { return type; }
protected:
llama_graph_type type;
public:
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
virtual void build_cb(
ggml_tensor * cur,
const char * name,
const llama_ubatch & ubatch,
int il) const = 0;
// apply control vector for layer il
virtual ggml_tensor * build_cvec(
ggml_context * ctx0,
ggml_tensor * cur,
int il) const = 0;
// do mat_mul, while optionally apply lora
virtual ggml_tensor * build_lora_mm(
ggml_context * ctx0,
ggml_tensor * w,
ggml_tensor * cur) const = 0;
// do mat_mul_id, while optionally apply lora
virtual ggml_tensor * build_lora_mm_id(
ggml_context * ctx0,
ggml_tensor * w, // struct ggml_tensor * as
ggml_tensor * cur, // struct ggml_tensor * b
ggml_tensor * ids) const = 0;
virtual ggml_tensor * build_rope_factors(int il) const = 0;
// note: optionally set the backend to be the same as the bbuf's backend
virtual ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
ggml_backend_buffer * bbuf) const = 0;
// graph build API (context-specific)
virtual ggml_tensor * build_inp_embd(
llama_graph_result * res,
ggml_context * ctx0,
ggml_tensor * tok_embd,
const llama_ubatch & ubatch) const = 0;
virtual ggml_tensor * build_inp_pos(
llama_graph_result * res,
ggml_context * ctx0,
int32_t n_tokens) const = 0;
virtual ggml_tensor * build_inp_pos_bucket(
llama_graph_result * res,
ggml_context * ctx0,
int32_t n_tokens) const = 0;
virtual ggml_tensor * build_inp_out_ids(
llama_graph_result * res,
ggml_context * ctx0) const = 0;
virtual ggml_tensor * build_inp_mean(
llama_graph_result * res,
ggml_context * ctx0,
int32_t n_tokens) const = 0;
virtual ggml_tensor * build_inp_cls(
llama_graph_result * res,
ggml_context * ctx0,
int32_t n_tokens) const = 0;
virtual llama_graph_input_attn_ptr build_attn_inp(
llama_graph_result * res,
ggml_context * ctx0,
int32_t n_tokens,
bool causal,
bool swa) const = 0;
virtual ggml_tensor * build_attn(
llama_graph_input_attn_i * inp,
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const;
virtual ggml_tensor * build_attn_cross(
llama_graph_input_attn_i * inp,
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const;
virtual ggml_tensor * build_inp_cross_embd(
llama_graph_result * res,
ggml_context * ctx0) const;
virtual ggml_tensor * build_inp_s_copy(
llama_graph_result * res,
ggml_context * ctx0) const;
virtual ggml_tensor * build_inp_s_mask(
llama_graph_result * res,
ggml_context * ctx0) const;
virtual ggml_tensor * build_copy_mask_state(
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const;
virtual ggml_tensor * build_mamba_layer(
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;
virtual ggml_tensor * build_rwkv_token_shift_load(
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;
virtual ggml_tensor * build_rwkv_token_shift_store(
ggml_context * ctx0,
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const;
virtual ggml_tensor * build_rwkv6_time_mix(
ggml_context * ctx0,
ggml_cgraph * gf,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;
};