mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* llama : llama_perf + option to disable timings during decode ggml-ci * common : add llama_arg * Update src/llama.cpp Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * perf : separate functions in the API ggml-ci * perf : safer pointer handling + naming update ggml-ci * minor : better local var name * perf : abort on invalid sampler pointer ggml-ci --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
		
			
				
	
	
		
			252 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
import Foundation
 | 
						|
import llama
 | 
						|
 | 
						|
let arguments = CommandLine.arguments
 | 
						|
 | 
						|
// Check that we have at least one argument (the model path)
 | 
						|
guard arguments.count > 1 else {
 | 
						|
    print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
 | 
						|
let modelPath: String = arguments[1]
 | 
						|
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
 | 
						|
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
 | 
						|
 | 
						|
// total length of the sequences including the prompt
 | 
						|
let n_len: Int = 32
 | 
						|
 | 
						|
// init LLM
 | 
						|
llama_backend_init()
 | 
						|
defer {
 | 
						|
    llama_backend_free()
 | 
						|
}
 | 
						|
 | 
						|
let model_params = llama_model_default_params()
 | 
						|
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
 | 
						|
    print("Failed to load model")
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
defer {
 | 
						|
    llama_free_model(model)
 | 
						|
}
 | 
						|
 | 
						|
var tokens = tokenize(text: prompt, add_bos: true)
 | 
						|
 | 
						|
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
 | 
						|
 | 
						|
var context_params = llama_context_default_params()
 | 
						|
context_params.n_ctx = n_kv_req
 | 
						|
context_params.n_batch = UInt32(max(n_len, n_parallel))
 | 
						|
context_params.n_threads = 8
 | 
						|
context_params.n_threads_batch = 8
 | 
						|
 | 
						|
let context = llama_new_context_with_model(model, context_params)
 | 
						|
guard context != nil else {
 | 
						|
    print("Failed to initialize context")
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
defer {
 | 
						|
    llama_free(context)
 | 
						|
}
 | 
						|
 | 
						|
var sparams = llama_sampler_chain_default_params()
 | 
						|
 | 
						|
let smpl = llama_sampler_chain_init(sparams)
 | 
						|
guard smpl != nil else {
 | 
						|
    print("Failed to initialize sampling")
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
defer {
 | 
						|
    llama_sampler_free(smpl)
 | 
						|
}
 | 
						|
 | 
						|
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40));
 | 
						|
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
 | 
						|
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4));
 | 
						|
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234));
 | 
						|
 | 
						|
let n_ctx = llama_n_ctx(context)
 | 
						|
 | 
						|
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
 | 
						|
 | 
						|
if n_kv_req > n_ctx {
 | 
						|
    print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
 | 
						|
var buffer: [CChar] = []
 | 
						|
for id: llama_token in tokens {
 | 
						|
    print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
 | 
						|
}
 | 
						|
 | 
						|
print("\n")
 | 
						|
 | 
						|
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
 | 
						|
defer {
 | 
						|
    llama_batch_free(batch)
 | 
						|
}
 | 
						|
 | 
						|
// evaluate the initial prompt
 | 
						|
batch.n_tokens = Int32(tokens.count)
 | 
						|
 | 
						|
for (i, token) in tokens.enumerated() {
 | 
						|
    batch.token[i] = token
 | 
						|
    batch.pos[i] = Int32(i)
 | 
						|
    batch.n_seq_id[i] = 1
 | 
						|
    // batch.seq_id[i][0] = 0
 | 
						|
    // TODO: is this the proper way to do this?
 | 
						|
    if let seq_id = batch.seq_id[i] {
 | 
						|
        seq_id[0] = 0
 | 
						|
    }
 | 
						|
    batch.logits[i] = 0
 | 
						|
}
 | 
						|
 | 
						|
// llama_decode will output logits only for the last token of the prompt
 | 
						|
batch.logits[Int(batch.n_tokens) - 1] = 1
 | 
						|
 | 
						|
if llama_decode(context, batch) != 0 {
 | 
						|
    print("llama_decode() failed")
 | 
						|
    exit(1)
 | 
						|
}
 | 
						|
 | 
						|
for i in 1 ..< n_parallel {
 | 
						|
    llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
 | 
						|
}
 | 
						|
 | 
						|
if n_parallel > 1 {
 | 
						|
    print("generating \(n_parallel) sequences ...\n")
 | 
						|
}
 | 
						|
 | 
						|
var streams: [String] = .init(repeating: "", count: n_parallel)
 | 
						|
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
 | 
						|
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
 | 
						|
 | 
						|
var n_cur = batch.n_tokens
 | 
						|
var n_decode = 0
 | 
						|
 | 
						|
let t_main_start = ggml_time_us()
 | 
						|
 | 
						|
while n_cur <= n_len {
 | 
						|
    // prepare the next batch
 | 
						|
    batch.n_tokens = 0
 | 
						|
 | 
						|
    // sample the next token for each parallel sequence / stream
 | 
						|
    for i in 0 ..< n_parallel {
 | 
						|
        if i_batch[i] < 0 {
 | 
						|
            // the stream has already finished
 | 
						|
            continue
 | 
						|
        }
 | 
						|
 | 
						|
        let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
 | 
						|
 | 
						|
        // is it an end of stream? -> mark the stream as finished
 | 
						|
        if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
 | 
						|
            i_batch[i] = -1
 | 
						|
            // print("")
 | 
						|
            if n_parallel > 1 {
 | 
						|
                print("stream \(i) finished at n_cur = \(n_cur)")
 | 
						|
            }
 | 
						|
 | 
						|
            continue
 | 
						|
        }
 | 
						|
 | 
						|
        let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
 | 
						|
 | 
						|
        // if there is only one stream, we print immediately to stdout
 | 
						|
        if n_parallel == 1 {
 | 
						|
            print(nextStringPiece, terminator: "")
 | 
						|
        }
 | 
						|
        streams[i] += nextStringPiece
 | 
						|
 | 
						|
        // push this new token for next evaluation
 | 
						|
        batch.token[Int(batch.n_tokens)] = new_token_id
 | 
						|
        batch.pos[Int(batch.n_tokens)] = n_cur
 | 
						|
        batch.n_seq_id[Int(batch.n_tokens)] = 1
 | 
						|
        if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
 | 
						|
            seq_id[0] = Int32(i)
 | 
						|
        }
 | 
						|
        batch.logits[Int(batch.n_tokens)] = 1
 | 
						|
 | 
						|
        i_batch[i] = batch.n_tokens
 | 
						|
 | 
						|
        batch.n_tokens += 1
 | 
						|
 | 
						|
        n_decode += 1
 | 
						|
    }
 | 
						|
 | 
						|
    // all streams are finished
 | 
						|
    if batch.n_tokens == 0 {
 | 
						|
        break
 | 
						|
    }
 | 
						|
 | 
						|
    n_cur += 1
 | 
						|
 | 
						|
    // evaluate the current batch with the transformer model
 | 
						|
    if llama_decode(context, batch) != 0 {
 | 
						|
        print("llama_decode() failed")
 | 
						|
        exit(1)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
if n_parallel > 1 {
 | 
						|
    print("\n")
 | 
						|
    for (i, stream) in streams.enumerated() {
 | 
						|
        print("sequence \(i):\n\n\(prompt)\(stream)\n")
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
let t_main_end = ggml_time_us()
 | 
						|
 | 
						|
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
 | 
						|
 | 
						|
llama_perf_sampler_print(smpl)
 | 
						|
llama_perf_context_print(context)
 | 
						|
 | 
						|
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | 
						|
    let utf8Count = text.utf8.count
 | 
						|
    let n_tokens = utf8Count + (add_bos ? 1 : 0)
 | 
						|
    let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | 
						|
    let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
 | 
						|
    var swiftTokens: [llama_token] = []
 | 
						|
    for i in 0 ..< tokenCount {
 | 
						|
        swiftTokens.append(tokens[Int(i)])
 | 
						|
    }
 | 
						|
    tokens.deallocate()
 | 
						|
    return swiftTokens
 | 
						|
}
 | 
						|
 | 
						|
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
 | 
						|
    var result = [CChar](repeating: 0, count: 8)
 | 
						|
    let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
 | 
						|
    if nTokens < 0 {
 | 
						|
        let actualTokensCount = -Int(nTokens)
 | 
						|
        result = .init(repeating: 0, count: actualTokensCount)
 | 
						|
        let check = llama_token_to_piece(
 | 
						|
            model,
 | 
						|
            token,
 | 
						|
            &result,
 | 
						|
            Int32(result.count),
 | 
						|
            0,
 | 
						|
            false
 | 
						|
        )
 | 
						|
        assert(check == actualTokensCount)
 | 
						|
    } else {
 | 
						|
        result.removeLast(result.count - Int(nTokens))
 | 
						|
    }
 | 
						|
    if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
 | 
						|
        return utfString
 | 
						|
    } else {
 | 
						|
        buffer.append(contentsOf: result)
 | 
						|
        let data = Data(buffer.map { UInt8(bitPattern: $0) })
 | 
						|
        if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
 | 
						|
            buffer = []
 | 
						|
        }
 | 
						|
        guard let bufferString = String(data: data, encoding: .utf8) else {
 | 
						|
            return nil
 | 
						|
        }
 | 
						|
        buffer = []
 | 
						|
        return bufferString
 | 
						|
    }
 | 
						|
}
 |