mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	Rename an old command name "finetune" to "llama-finetune" in README.md Signed-off-by: Masanari Iida <standby24x7@gmail.com>
		
			
				
	
	
		
			91 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# finetune
 | 
						|
 | 
						|
Basic usage instructions:
 | 
						|
 | 
						|
```bash
 | 
						|
# get training data
 | 
						|
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
 | 
						|
 | 
						|
# finetune LORA adapter
 | 
						|
./bin/llama-finetune \
 | 
						|
        --model-base open-llama-3b-v2-q8_0.gguf \
 | 
						|
        --checkpoint-in  chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
 | 
						|
        --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
 | 
						|
        --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
 | 
						|
        --train-data "shakespeare.txt" \
 | 
						|
        --save-every 10 \
 | 
						|
        --threads 6 --adam-iter 30 --batch 4 --ctx 64 \
 | 
						|
        --use-checkpointing
 | 
						|
 | 
						|
# predict
 | 
						|
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
 | 
						|
```
 | 
						|
 | 
						|
**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
 | 
						|
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
 | 
						|
So in above example after 10 iterations these files will be written:
 | 
						|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
 | 
						|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
 | 
						|
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
 | 
						|
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
 | 
						|
 | 
						|
After 10 more iterations:
 | 
						|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
 | 
						|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
 | 
						|
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
 | 
						|
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
 | 
						|
 | 
						|
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
 | 
						|
 | 
						|
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
 | 
						|
These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
 | 
						|
 | 
						|
In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
 | 
						|
 | 
						|
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
 | 
						|
 | 
						|
```bash
 | 
						|
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
 | 
						|
  --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
 | 
						|
  --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
 | 
						|
```
 | 
						|
 | 
						|
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
 | 
						|
 | 
						|
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
 | 
						|
 | 
						|
```bash
 | 
						|
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
 | 
						|
  --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
 | 
						|
  --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
 | 
						|
  --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
 | 
						|
```
 | 
						|
 | 
						|
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
 | 
						|
 | 
						|
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
 | 
						|
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
 | 
						|
 | 
						|
The default LORA rank can be specified with `--lora-r N`.
 | 
						|
The LORA rank can be configured for each model tensor type separately with these command line options:
 | 
						|
 | 
						|
```bash
 | 
						|
  --lora-r N                 LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
 | 
						|
  --rank-att-norm N          LORA rank for attention norm tensor (default 1)
 | 
						|
  --rank-ffn-norm N          LORA rank for feed-forward norm tensor (default 1)
 | 
						|
  --rank-out-norm N          LORA rank for output norm tensor (default 1)
 | 
						|
  --rank-tok-embd N          LORA rank for token embeddings tensor (default 4)
 | 
						|
  --rank-out N               LORA rank for output tensor (default 4)
 | 
						|
  --rank-wq N                LORA rank for wq tensor (default 4)
 | 
						|
  --rank-wk N                LORA rank for wk tensor (default 4)
 | 
						|
  --rank-wv N                LORA rank for wv tensor (default 4)
 | 
						|
  --rank-wo N                LORA rank for wo tensor (default 4)
 | 
						|
  --rank-ffn_gate N          LORA rank for ffn_gate tensor (default 4)
 | 
						|
  --rank-ffn_down N          LORA rank for ffn_down tensor (default 4)
 | 
						|
  --rank-ffn_up N            LORA rank for ffn_up tensor (default 4)
 | 
						|
```
 | 
						|
 | 
						|
The LORA rank of 'norm' tensors should always be 1.
 | 
						|
 | 
						|
To see all available options use `llama-finetune --help`.
 |