mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 8d4a855c24
			
		
	
	8d4a855c24
	
	
	
		
			
			* working but ugly * add arg flag, not working on embedding mode * typo * Working! Thanks to @nullhook * make params argument instead of hardcoded boolean. remove useless time check * start doing the instructions but not finished. This probably doesnt compile * Embeddings extraction support --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			513 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			513 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "utils.h"
 | |
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| #if defined (_WIN32)
 | |
| #pragma comment(lib,"kernel32.lib")
 | |
| extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
 | |
| extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
 | |
| extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
 | |
| #endif
 | |
| 
 | |
| #define ANSI_COLOR_RED     "\x1b[31m"
 | |
| #define ANSI_COLOR_GREEN   "\x1b[32m"
 | |
| #define ANSI_COLOR_YELLOW  "\x1b[33m"
 | |
| #define ANSI_COLOR_BLUE    "\x1b[34m"
 | |
| #define ANSI_COLOR_MAGENTA "\x1b[35m"
 | |
| #define ANSI_COLOR_CYAN    "\x1b[36m"
 | |
| #define ANSI_COLOR_RESET   "\x1b[0m"
 | |
| #define ANSI_BOLD          "\x1b[1m"
 | |
| 
 | |
| /* Keep track of current color of output, and emit ANSI code if it changes. */
 | |
| enum console_state {
 | |
|     CONSOLE_STATE_DEFAULT=0,
 | |
|     CONSOLE_STATE_PROMPT,
 | |
|     CONSOLE_STATE_USER_INPUT
 | |
| };
 | |
| 
 | |
| static console_state con_st = CONSOLE_STATE_DEFAULT;
 | |
| static bool con_use_color = false;
 | |
| 
 | |
| void set_console_state(console_state new_st)
 | |
| {
 | |
|     if (!con_use_color) return;
 | |
|     // only emit color code if state changed
 | |
|     if (new_st != con_st) {
 | |
|         con_st = new_st;
 | |
|         switch(con_st) {
 | |
|         case CONSOLE_STATE_DEFAULT:
 | |
|             printf(ANSI_COLOR_RESET);
 | |
|             return;
 | |
|         case CONSOLE_STATE_PROMPT:
 | |
|             printf(ANSI_COLOR_YELLOW);
 | |
|             return;
 | |
|         case CONSOLE_STATE_USER_INPUT:
 | |
|             printf(ANSI_BOLD ANSI_COLOR_GREEN);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::vector<double> softmax(const std::vector<float>& logits) {
 | |
|     std::vector<double> probs(logits.size());
 | |
|     float max_logit = logits[0];
 | |
|     for (float v : logits) max_logit = std::max(max_logit, v);
 | |
|     double sum_exp = 0.0;
 | |
|     for (size_t i = 0; i < logits.size(); i++) {
 | |
|         // Subtract the maximum logit value from the current logit value for numerical stability
 | |
|         float logit = logits[i] - max_logit;
 | |
|         double exp_logit = std::exp(logit);
 | |
|         sum_exp += exp_logit;
 | |
|         probs[i] = exp_logit;
 | |
|     }
 | |
|     for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | |
|     return probs;
 | |
| }
 | |
| 
 | |
| void perplexity(llama_context * ctx, const gpt_params & params) {
 | |
|     // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | |
|     // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | |
|     // Output: `perplexity: 13.5106 [114/114]`
 | |
|     auto tokens = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     int count = 0;
 | |
|     double nll = 0.0;
 | |
|     int seq_count = tokens.size() / params.n_ctx;
 | |
| 
 | |
|     fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
 | |
| 
 | |
|     for (int i = 0; i < seq_count; ++i) {
 | |
|         int start = i * params.n_ctx;
 | |
|         int end = start + params.n_ctx - 1;
 | |
|         std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
 | |
|         auto start_t = std::chrono::high_resolution_clock::now();
 | |
|         if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return;
 | |
|         }
 | |
|         auto end_t = std::chrono::high_resolution_clock::now();
 | |
|         if (i == 0) {
 | |
|             double seconds = std::chrono::duration<double>(end_t - start_t).count();
 | |
|             printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
 | |
|         }
 | |
|         // We get the logits for all the tokens in the context window (params.n_ctx)
 | |
|         // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | |
|         // calculate the perplexity over the last half the window (so the model always has
 | |
|         // some context to predict the token).
 | |
|         //
 | |
|         // We rely on the fact that attention in the forward pass only looks at previous
 | |
|         // tokens here, so the logits returned for each token are an accurate representation
 | |
|         // of what the model would have predicted at that point.
 | |
|         //
 | |
|         // Example, we have a context window of 512, we will compute perplexity for each of the
 | |
|         // last 256 tokens.  Then, we split the input up into context window size chunks to
 | |
|         // process the entire prompt.
 | |
| 
 | |
|         auto logits = llama_get_logits(ctx);
 | |
|         for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
 | |
|             // Calculate probability of next token, given the previous ones.
 | |
|             int n_vocab = llama_n_vocab(ctx);
 | |
|             std::vector<float> tok_logits(
 | |
|                 logits + j * n_vocab,
 | |
|                 logits + (j + 1) * n_vocab);
 | |
|             double prob = softmax(tok_logits)[tokens[start + j + 1]];
 | |
|             nll += -std::log(prob);
 | |
|             ++count;
 | |
|         }
 | |
|         // perplexity is e^(average negative log-likelihood)
 | |
|         printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | |
|         fflush(stdout);
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static bool is_interacting = false;
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| void sigint_handler(int signo) {
 | |
|     set_console_state(CONSOLE_STATE_DEFAULT);
 | |
|     printf("\n"); // this also force flush stdout.
 | |
|     if (signo == SIGINT) {
 | |
|         if (!is_interacting) {
 | |
|             is_interacting=true;
 | |
|         } else {
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     // has to be called once at the start of the program to init ggml stuff
 | |
|     ggml_time_init();
 | |
| 
 | |
|     gpt_params params;
 | |
|     params.model = "models/llama-7B/ggml-model.bin";
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx > 2048) {
 | |
|         fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | |
|                 "expect poor results\n", __func__, params.n_ctx);
 | |
|     }
 | |
| 
 | |
|     if (params.seed <= 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.random_prompt) {
 | |
|         params.prompt = gpt_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
|     // save choice to use color for later
 | |
|     // (note for later: this is a slightly awkward choice)
 | |
|     con_use_color = params.use_color;
 | |
| 
 | |
| //    params.prompt = R"(// this function checks if the number n is prime
 | |
| //bool is_prime(int n) {)";
 | |
| 
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         auto lparams = llama_context_default_params();
 | |
| 
 | |
|         lparams.n_ctx      = params.n_ctx;
 | |
|         lparams.n_parts    = params.n_parts;
 | |
|         lparams.seed       = params.seed;
 | |
|         lparams.f16_kv     = params.memory_f16;
 | |
|         lparams.logits_all = params.perplexity;
 | |
|         lparams.embedding  = params.embedding;
 | |
| 
 | |
|         ctx = llama_init_from_file(params.model.c_str(), lparams);
 | |
| 
 | |
|         if (ctx == NULL) {
 | |
|             fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | |
|                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | |
|     }
 | |
| 
 | |
|     // determine the required inference memory per token:
 | |
|     // TODO: better way to do that
 | |
|     {
 | |
|         const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
 | |
|         llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
 | |
|     }
 | |
| 
 | |
|     if (params.perplexity) {
 | |
|         perplexity(ctx, params);
 | |
|         exit(0);
 | |
|     }
 | |
| 
 | |
|     int n_past = 0;
 | |
| 
 | |
|     // Add a space in front of the first character to match OG llama tokenizer behavior
 | |
|     params.prompt.insert(0, 1, ' ');
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size());
 | |
| 
 | |
|     // prefix & suffix for instruct mode
 | |
|     const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
 | |
|     const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
 | |
| 
 | |
|     // in instruct mode, we inject a prefix and a suffix to each input by the user
 | |
|     if (params.instruct) {
 | |
|         params.interactive = true;
 | |
|         params.antiprompt.push_back("### Instruction:\n\n");
 | |
|     }
 | |
| 
 | |
|     // enable interactive mode if reverse prompt is specified
 | |
|     if (params.antiprompt.size() != 0) {
 | |
|         params.interactive = true;
 | |
|     }
 | |
| 
 | |
|     if (params.interactive_start) {
 | |
|         params.interactive = true;
 | |
|     }
 | |
| 
 | |
|     // determine newline token
 | |
|     auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|     fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|     for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|         fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
|     if (params.interactive) {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         signal(SIGINT, sigint_handler);
 | |
| #endif
 | |
| 
 | |
|         fprintf(stderr, "%s: interactive mode on.\n", __func__);
 | |
| 
 | |
|         if(params.antiprompt.size()) {
 | |
|             for (auto antiprompt : params.antiprompt) {
 | |
|                 fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     std::vector<llama_token> embd;
 | |
| 
 | |
| 
 | |
|     int last_n_size = params.repeat_last_n;
 | |
|     std::vector<llama_token> last_n_tokens(last_n_size);
 | |
|     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | |
| 
 | |
|     if (params.interactive) {
 | |
|         fprintf(stderr, "== Running in interactive mode. ==\n"
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
|                " - Press Ctrl+C to interject at any time.\n"
 | |
| #endif
 | |
|                " - Press Return to return control to LLaMa.\n"
 | |
|                " - If you want to submit another line, end your input in '\\'.\n\n");
 | |
|         is_interacting = params.interactive_start || params.instruct;
 | |
|     }
 | |
| 
 | |
|     int input_consumed = 0;
 | |
|     bool input_noecho = false;
 | |
| 
 | |
|     int remaining_tokens = params.n_predict;
 | |
| 
 | |
| #if defined (_WIN32)
 | |
|   if (params.use_color) {
 | |
|         // Enable ANSI colors on Windows 10+
 | |
|         unsigned long dwMode = 0;
 | |
|         void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
 | |
|         if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
 | |
|             SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     // the first thing we will do is to output the prompt, so set color accordingly
 | |
|     set_console_state(CONSOLE_STATE_PROMPT);
 | |
| 
 | |
|     if (params.embedding){
 | |
|         embd = embd_inp;
 | |
| 
 | |
|         if (embd.size() > 0) {
 | |
|             if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
 | |
|                 fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const auto embeddings = llama_get_embeddings(ctx);
 | |
| 
 | |
|         // TODO: print / use the embeddings
 | |
| 
 | |
|         if (params.use_color) {
 | |
|             printf(ANSI_COLOR_RESET);
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     while (remaining_tokens > 0 || params.interactive) {
 | |
|         // predict
 | |
|         if (embd.size() > 0) {
 | |
|             if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
 | |
|                 fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         n_past += embd.size();
 | |
|         embd.clear();
 | |
| 
 | |
|         if ((int) embd_inp.size() <= input_consumed) {
 | |
|             // out of user input, sample next token
 | |
|             const float top_k          = params.top_k;
 | |
|             const float top_p          = params.top_p;
 | |
|             const float temp           = params.temp;
 | |
|             const float repeat_penalty = params.repeat_penalty;
 | |
| 
 | |
|             llama_token id = 0;
 | |
| 
 | |
|             {
 | |
|                 auto logits = llama_get_logits(ctx);
 | |
| 
 | |
|                 if (params.ignore_eos) {
 | |
|                     // set the logit of the eos token to zero to avoid sampling it
 | |
|                     //logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
 | |
|                     // TODO: this does not work of params.logits_all == true
 | |
|                     assert(params.perplexity == false);
 | |
|                     logits[llama_token_eos()] = 0;
 | |
|                 }
 | |
| 
 | |
|                 id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
 | |
| 
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(id);
 | |
|             }
 | |
| 
 | |
|             // replace end of text token with newline token when in interactive mode
 | |
|             if (id == llama_token_eos() && params.interactive) {
 | |
|                 id = llama_token_newline.front();
 | |
|                 if (params.antiprompt.size() != 0) {
 | |
|                     // tokenize and inject first reverse prompt
 | |
|                     const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
 | |
|                     embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // add it to the context
 | |
|             embd.push_back(id);
 | |
| 
 | |
|             // echo this to console
 | |
|             input_noecho = false;
 | |
| 
 | |
|             // decrement remaining sampling budget
 | |
|             --remaining_tokens;
 | |
|         } else {
 | |
|             // some user input remains from prompt or interaction, forward it to processing
 | |
|             while ((int) embd_inp.size() > input_consumed) {
 | |
|                 embd.push_back(embd_inp[input_consumed]);
 | |
|                 last_n_tokens.erase(last_n_tokens.begin());
 | |
|                 last_n_tokens.push_back(embd_inp[input_consumed]);
 | |
|                 ++input_consumed;
 | |
|                 if ((int) embd.size() >= params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         if (!input_noecho) {
 | |
|             for (auto id : embd) {
 | |
|                 printf("%s", llama_token_to_str(ctx, id));
 | |
|             }
 | |
|             fflush(stdout);
 | |
|         }
 | |
|         // reset color to default if we there is no pending user input
 | |
|         if (!input_noecho && (int)embd_inp.size() == input_consumed) {
 | |
|             set_console_state(CONSOLE_STATE_DEFAULT);
 | |
|         }
 | |
| 
 | |
|         // in interactive mode, and not currently processing queued inputs;
 | |
|         // check if we should prompt the user for more
 | |
|         if (params.interactive && (int) embd_inp.size() <= input_consumed) {
 | |
|             // check for reverse prompt
 | |
|             std::string last_output;
 | |
|             for (auto id : last_n_tokens) {
 | |
|                 last_output += llama_token_to_str(ctx, id);
 | |
|             }
 | |
| 
 | |
|             // Check if each of the reverse prompts appears at the end of the output.
 | |
|             for (std::string antiprompt : params.antiprompt) {
 | |
|                 if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
 | |
|                     is_interacting = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (is_interacting) {
 | |
|                 // potentially set color to indicate we are taking user input
 | |
|                 set_console_state(CONSOLE_STATE_USER_INPUT);
 | |
| 
 | |
|                 if (params.instruct) {
 | |
|                     input_consumed = embd_inp.size();
 | |
|                     embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
 | |
| 
 | |
|                     printf("\n> ");
 | |
|                 }
 | |
| 
 | |
|                 std::string buffer;
 | |
|                 std::string line;
 | |
|                 bool another_line = true;
 | |
|                 do {
 | |
|                     std::getline(std::cin, line);
 | |
|                     if (line.empty() || line.back() != '\\') {
 | |
|                         another_line = false;
 | |
|                     } else {
 | |
|                         line.pop_back(); // Remove the continue character
 | |
|                     }
 | |
|                     buffer += line + '\n'; // Append the line to the result
 | |
|                 } while (another_line);
 | |
| 
 | |
|                 // done taking input, reset color
 | |
|                 set_console_state(CONSOLE_STATE_DEFAULT);
 | |
| 
 | |
|                 auto line_inp = ::llama_tokenize(ctx, buffer, false);
 | |
|                 embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | |
| 
 | |
|                 if (params.instruct) {
 | |
|                     embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
 | |
|                 }
 | |
| 
 | |
|                 remaining_tokens -= line_inp.size();
 | |
| 
 | |
|                 input_noecho = true; // do not echo this again
 | |
|             }
 | |
|             is_interacting = false;
 | |
|         }
 | |
| 
 | |
|         // end of text token
 | |
|         if (embd.back() == llama_token_eos()) {
 | |
|             fprintf(stderr, " [end of text]\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 | |
|         if (params.interactive && remaining_tokens <= 0) {
 | |
|             remaining_tokens = params.n_predict;
 | |
|             is_interacting = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined (_WIN32)
 | |
|     signal(SIGINT, SIG_DFL);
 | |
| #endif
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     set_console_state(CONSOLE_STATE_DEFAULT);
 | |
| 
 | |
|     return 0;
 | |
| }
 |