mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			102 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| #include <random>
 | |
| #include <thread>
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| 
 | |
| struct gpt_params {
 | |
|     int32_t seed      = -1; // RNG seed
 | |
|     int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | |
|     int32_t n_predict = 128; // new tokens to predict
 | |
| 
 | |
|     // sampling parameters
 | |
|     int32_t top_k = 40; // unused
 | |
|     float   top_p = 0.95f;
 | |
|     float   temp  = 0.80f;
 | |
| 
 | |
|     int32_t n_batch = 8; // batch size for prompt processing
 | |
| 
 | |
|     std::string model = "models/lamma-7B/ggml-model.bin"; // model path
 | |
|     std::string prompt;
 | |
| };
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng);
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| struct gpt_vocab {
 | |
|     using id    = int32_t;
 | |
|     using token = std::string;
 | |
| 
 | |
|     std::map<token, id> token_to_id;
 | |
|     std::map<id, token> id_to_token;
 | |
| };
 | |
| 
 | |
| void replace(std::string & str, const std::string & needle, const std::string & replacement);
 | |
| 
 | |
| // poor-man's JSON parsing
 | |
| std::map<std::string, int32_t> json_parse(const std::string & fname);
 | |
| 
 | |
| // split text into tokens
 | |
| //
 | |
| // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
 | |
| //
 | |
| // Regex (Python):
 | |
| // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
 | |
| //
 | |
| // Regex (C++):
 | |
| // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
 | |
| //
 | |
| std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
 | |
| 
 | |
| // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
 | |
| // ref: https://github.com/google/sentencepiece
 | |
| std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
 | |
| 
 | |
| // load the tokens from encoder.json
 | |
| bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
 | |
| 
 | |
| // sample next token given probabilities for each embedding
 | |
| //
 | |
| //   - consider only the top K tokens
 | |
| //   - from them, consider only the top tokens with cumulative probability > P
 | |
| //
 | |
| // TODO: not sure if this implementation is correct
 | |
| // TODO: temperature is not implemented
 | |
| //
 | |
| gpt_vocab::id gpt_sample_top_k_top_p(
 | |
|         const gpt_vocab & vocab,
 | |
|         const float * logits,
 | |
|         int    top_k,
 | |
|         double top_p,
 | |
|         double temp,
 | |
|         std::mt19937 & rng);
 | |
| 
 | |
| gpt_vocab::id llama_sample_top_p(
 | |
|         const gpt_vocab & vocab,
 | |
|         const float * logits,
 | |
|         double top_p,
 | |
|         double temp,
 | |
|         std::mt19937 & rng);
 | |
| 
 | |
| //
 | |
| // Quantization
 | |
| //
 | |
| 
 | |
| size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 | |
| size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 | 
