mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 88b5769487
			
		
	
	88b5769487
	
	
	
		
			
			* gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
		
			
				
	
	
		
			108 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #define LLAMA_API_CPP // TODO: eliminate me
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <random>
 | |
| #include <thread>
 | |
| #include <unordered_map>
 | |
| #include <tuple>
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| int32_t get_num_physical_cores();
 | |
| 
 | |
| struct gpt_params {
 | |
|     uint32_t seed                           = -1;   // RNG seed
 | |
|     int32_t n_threads                       = get_num_physical_cores();
 | |
|     int32_t n_predict                       = -1;   // new tokens to predict
 | |
|     int32_t n_ctx                           = 512;  // context size
 | |
|     int32_t n_batch                         = 512;  // batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_keep                          = 0;    // number of tokens to keep from initial prompt
 | |
|     int32_t n_chunks                        = -1;   // max number of chunks to process (-1 = unlimited)
 | |
|     int32_t n_gpu_layers                    = 0;    // number of layers to store in VRAM
 | |
|     int32_t main_gpu                        = 0;    // the GPU that is used for scratch and small tensors
 | |
|     float   tensor_split[LLAMA_MAX_DEVICES] = {0};  // how split tensors should be distributed across GPUs
 | |
|     int32_t n_probs                         = 0;    // if greater than 0, output the probabilities of top n_probs tokens.
 | |
|     float   rope_freq_base                  = 10000.0f; // RoPE base frequency
 | |
|     float   rope_freq_scale                 = 1.0f;     // RoPE frequency scaling factor
 | |
| 
 | |
|     // sampling parameters
 | |
|     std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
 | |
|     int32_t top_k             = 40;    // <= 0 to use vocab size
 | |
|     float   top_p             = 0.95f; // 1.0 = disabled
 | |
|     float   tfs_z             = 1.00f; // 1.0 = disabled
 | |
|     float   typical_p         = 1.00f; // 1.0 = disabled
 | |
|     float   temp              = 0.80f; // 1.0 = disabled
 | |
|     float   repeat_penalty    = 1.10f; // 1.0 = disabled
 | |
|     int32_t repeat_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | |
|     float   frequency_penalty = 0.00f; // 0.0 = disabled
 | |
|     float   presence_penalty  = 0.00f; // 0.0 = disabled
 | |
|     int32_t mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | |
|     float   mirostat_tau      = 5.00f; // target entropy
 | |
|     float   mirostat_eta      = 0.10f; // learning rate
 | |
| 
 | |
|     // Classifier-Free Guidance
 | |
|     // https://arxiv.org/abs/2306.17806
 | |
|     std::string cfg_negative_prompt;       // string to help guidance
 | |
|     float       cfg_scale         = 1.f;   // How strong is guidance
 | |
| 
 | |
|     std::string model             = "models/7B/ggml-model.bin"; // model path
 | |
|     std::string model_alias       = "unknown"; // model alias
 | |
|     std::string prompt            = "";
 | |
|     std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
 | |
|     std::string input_prefix      = "";  // string to prefix user inputs with
 | |
|     std::string input_suffix      = "";  // string to suffix user inputs with
 | |
|     std::string grammar           = "";  // optional BNF-like grammar to constrain sampling
 | |
|     std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | |
| 
 | |
|     std::string lora_adapter = "";  // lora adapter path
 | |
|     std::string lora_base    = "";  // base model path for the lora adapter
 | |
| 
 | |
|     bool hellaswag         = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
 | |
|     size_t hellaswag_tasks = 400;   // number of tasks to use when computing the HellaSwag score
 | |
| 
 | |
|     bool low_vram          = false; // if true, reduce VRAM usage at the cost of performance
 | |
|     bool mul_mat_q         = false; // if true, use experimental mul_mat_q kernels
 | |
|     bool memory_f16        = true;  // use f16 instead of f32 for memory kv
 | |
|     bool random_prompt     = false; // do not randomize prompt if none provided
 | |
|     bool use_color         = false; // use color to distinguish generations and inputs
 | |
|     bool interactive       = false; // interactive mode
 | |
|     bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | |
|     bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | |
| 
 | |
|     bool embedding         = false; // get only sentence embedding
 | |
|     bool interactive_first = false; // wait for user input immediately
 | |
|     bool multiline_input   = false; // reverse the usage of `\`
 | |
|     bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
 | |
| 
 | |
|     bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
 | |
|     bool instruct          = false; // instruction mode (used for Alpaca models)
 | |
|     bool penalize_nl       = true;  // consider newlines as a repeatable token
 | |
|     bool perplexity        = false; // compute perplexity over the prompt
 | |
|     bool use_mmap          = true;  // use mmap for faster loads
 | |
|     bool use_mlock         = false; // use mlock to keep model in memory
 | |
|     bool mem_test          = false; // compute maximum memory usage
 | |
|     bool numa              = false; // attempt optimizations that help on some NUMA systems
 | |
|     bool export_cgraph     = false; // export the computation graph
 | |
|     bool verbose_prompt    = false; // print prompt tokens before generation
 | |
| };
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng);
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
 | |
| struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
 |