mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 438c2ca830
			
		
	
	438c2ca830
	
	
	
		
			
			* implementing parallel decoding in server example * crash fixed * save dev progress * refactored sampling function * completion endpoint working * multiple client support * grammar + no stream completion * cached prompt support * chat.mjs support cached prompt + some fixes * server ui now support multiple clients * unused change reverted * fixed timings per slot * add context swap * add changes to README.md * llava multimodal integration * fixed tokens probs * add multimodal input - alfa * refactor code + remove unused comments + improved README.md * fix compilation errors with llvm * notify the user from server ui that multimodality is unavialable * some ci fixes * fix ci make build undefined ref errors * fix long prompt than ctx proposed in #3639 * fixed premature end due stop word * context shift fixed * fix llava implementation * sync README.md changes * readme change * update api like OpenAI * multimodal support enabled by default * fix make bui;d errors * fix multiple clients * fix zig build * new sampling API * latest changes of sampling API * server : coding-style normalization * server : coding-style normalization (part 2) * server : remove beam-search functionality * server : bug fix in ingest_images n_tokens is incremented internally by llama_batch_add * server : use refs + use llama_batch_clear() * server : snake case * server : minor sync * added thread safe pipeline * server : bach has to be allocated for n_parallel sequences * server : no need for atomic int - already using mutex * server : logs + minor code style * server : fix multibyte handle in partial response (#3706) * fix image load + view image in chat * make : silence stb warnings * clip : link to ggml, not to llama * server : fix switch fallthrough * server : fix crash in Debug on macOS (I have no idea why this fixes it!?) * server : refactor ctx_sampling init + n_ctx + names * server : bug fix for prompt caching * Do not save/load image_data to localStorage * editorconfig : new line in index.html * server : completion requests remember slot_id * Update readme to document multimodal in server * server : minor style * Update readme to document multimodal in server * server : hide ctx_sampling->prev behind API (#3696) * server : apply fix from #3722 * server : fix slot reuse * server : add comment about changing slot_state to bool --------- Co-authored-by: FSSRepo <go778sgt@gmail.com> Co-authored-by: Damian Stewart <d@damianstewart.com> Co-authored-by: Steward Garcia <57494570+FSSRepo@users.noreply.github.com> Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com> Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
		
			
				
	
	
		
			224 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| import argparse
 | |
| from flask import Flask, jsonify, request, Response
 | |
| import urllib.parse
 | |
| import requests
 | |
| import time
 | |
| import json
 | |
| 
 | |
| 
 | |
| app = Flask(__name__)
 | |
| slot_id = -1
 | |
| 
 | |
| parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
 | |
| parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
 | |
| parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ")
 | |
| parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ")
 | |
| parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ")
 | |
| parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
 | |
| parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
 | |
| parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
 | |
| parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
 | |
| parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
 | |
| 
 | |
| args = parser.parse_args()
 | |
| 
 | |
| def is_present(json, key):
 | |
|     try:
 | |
|         buf = json[key]
 | |
|     except KeyError:
 | |
|         return False
 | |
|     if json[key] == None:
 | |
|         return False
 | |
|     return True
 | |
| 
 | |
| #convert chat to prompt
 | |
| def convert_chat(messages):
 | |
|     prompt = "" + args.chat_prompt.replace("\\n", "\n")
 | |
| 
 | |
|     system_n = args.system_name.replace("\\n", "\n")
 | |
|     user_n = args.user_name.replace("\\n", "\n")
 | |
|     ai_n = args.ai_name.replace("\\n", "\n")
 | |
|     stop = args.stop.replace("\\n", "\n")
 | |
| 
 | |
| 
 | |
|     for line in messages:
 | |
|         if (line["role"] == "system"):
 | |
|             prompt += f"{system_n}{line['content']}"
 | |
|         if (line["role"] == "user"):
 | |
|             prompt += f"{user_n}{line['content']}"
 | |
|         if (line["role"] == "assistant"):
 | |
|             prompt += f"{ai_n}{line['content']}{stop}"
 | |
|     prompt += ai_n.rstrip()
 | |
| 
 | |
|     return prompt
 | |
| 
 | |
| def make_postData(body, chat=False, stream=False):
 | |
|     postData = {}
 | |
|     if (chat):
 | |
|         postData["prompt"] = convert_chat(body["messages"])
 | |
|     else:
 | |
|         postData["prompt"] = body["prompt"]
 | |
|     if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
 | |
|     if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
 | |
|     if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
 | |
|     if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
 | |
|     if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
 | |
|     if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
 | |
|     if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
 | |
|     if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
 | |
|     if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
 | |
|     if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
 | |
|     if(is_present(body, "seed")): postData["seed"] = body["seed"]
 | |
|     if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
 | |
|     if (args.stop != ""):
 | |
|         postData["stop"] = [args.stop]
 | |
|     else:
 | |
|         postData["stop"] = []
 | |
|     if(is_present(body, "stop")): postData["stop"] += body["stop"]
 | |
|     postData["n_keep"] = -1
 | |
|     postData["stream"] = stream
 | |
|     postData["cache_prompt"] = True
 | |
|     postData["slot_id"] = slot_id
 | |
|     return postData
 | |
| 
 | |
| def make_resData(data, chat=False, promptToken=[]):
 | |
|     resData = {
 | |
|         "id": "chatcmpl" if (chat) else "cmpl",
 | |
|         "object": "chat.completion" if (chat) else "text_completion",
 | |
|         "created": int(time.time()),
 | |
|         "truncated": data["truncated"],
 | |
|         "model": "LLaMA_CPP",
 | |
|         "usage": {
 | |
|             "prompt_tokens": data["tokens_evaluated"],
 | |
|             "completion_tokens": data["tokens_predicted"],
 | |
|             "total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
 | |
|         }
 | |
|     }
 | |
|     if (len(promptToken) != 0):
 | |
|         resData["promptToken"] = promptToken
 | |
|     if (chat):
 | |
|         #only one choice is supported
 | |
|         resData["choices"] = [{
 | |
|             "index": 0,
 | |
|             "message": {
 | |
|                 "role": "assistant",
 | |
|                 "content": data["content"],
 | |
|             },
 | |
|             "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
 | |
|         }]
 | |
|     else:
 | |
|         #only one choice is supported
 | |
|         resData["choices"] = [{
 | |
|             "text": data["content"],
 | |
|             "index": 0,
 | |
|             "logprobs": None,
 | |
|             "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
 | |
|         }]
 | |
|     return resData
 | |
| 
 | |
| def make_resData_stream(data, chat=False, time_now = 0, start=False):
 | |
|     resData = {
 | |
|         "id": "chatcmpl" if (chat) else "cmpl",
 | |
|         "object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
 | |
|         "created": time_now,
 | |
|         "model": "LLaMA_CPP",
 | |
|         "choices": [
 | |
|             {
 | |
|                 "finish_reason": None,
 | |
|                 "index": 0
 | |
|             }
 | |
|         ]
 | |
|     }
 | |
|     slot_id = data["slot_id"]
 | |
|     if (chat):
 | |
|         if (start):
 | |
|             resData["choices"][0]["delta"] =  {
 | |
|                 "role": "assistant"
 | |
|             }
 | |
|         else:
 | |
|             resData["choices"][0]["delta"] =  {
 | |
|                 "content": data["content"]
 | |
|             }
 | |
|             if (data["stop"]):
 | |
|                 resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
 | |
|     else:
 | |
|         resData["choices"][0]["text"] = data["content"]
 | |
|         if (data["stop"]):
 | |
|             resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
 | |
| 
 | |
|     return resData
 | |
| 
 | |
| 
 | |
| @app.route('/chat/completions', methods=['POST'])
 | |
| @app.route('/v1/chat/completions', methods=['POST'])
 | |
| def chat_completions():
 | |
|     if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
 | |
|         return Response(status=403)
 | |
|     body = request.get_json()
 | |
|     stream = False
 | |
|     tokenize = False
 | |
|     if(is_present(body, "stream")): stream = body["stream"]
 | |
|     if(is_present(body, "tokenize")): tokenize = body["tokenize"]
 | |
|     postData = make_postData(body, chat=True, stream=stream)
 | |
| 
 | |
|     promptToken = []
 | |
|     if (tokenize):
 | |
|         tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
 | |
|         promptToken = tokenData["tokens"]
 | |
| 
 | |
|     if (not stream):
 | |
|         data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
 | |
|         print(data.json())
 | |
|         resData = make_resData(data.json(), chat=True, promptToken=promptToken)
 | |
|         return jsonify(resData)
 | |
|     else:
 | |
|         def generate():
 | |
|             data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
 | |
|             time_now = int(time.time())
 | |
|             resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
 | |
|             yield 'data: {}\n'.format(json.dumps(resData))
 | |
|             for line in data.iter_lines():
 | |
|                 if line:
 | |
|                     decoded_line = line.decode('utf-8')
 | |
|                     resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
 | |
|                     yield 'data: {}\n'.format(json.dumps(resData))
 | |
|         return Response(generate(), mimetype='text/event-stream')
 | |
| 
 | |
| 
 | |
| @app.route('/completions', methods=['POST'])
 | |
| @app.route('/v1/completions', methods=['POST'])
 | |
| def completion():
 | |
|     if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
 | |
|         return Response(status=403)
 | |
|     body = request.get_json()
 | |
|     stream = False
 | |
|     tokenize = False
 | |
|     if(is_present(body, "stream")): stream = body["stream"]
 | |
|     if(is_present(body, "tokenize")): tokenize = body["tokenize"]
 | |
|     postData = make_postData(body, chat=False, stream=stream)
 | |
| 
 | |
|     promptToken = []
 | |
|     if (tokenize):
 | |
|         tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
 | |
|         promptToken = tokenData["tokens"]
 | |
| 
 | |
|     if (not stream):
 | |
|         data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
 | |
|         print(data.json())
 | |
|         resData = make_resData(data.json(), chat=False, promptToken=promptToken)
 | |
|         return jsonify(resData)
 | |
|     else:
 | |
|         def generate():
 | |
|             data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
 | |
|             time_now = int(time.time())
 | |
|             for line in data.iter_lines():
 | |
|                 if line:
 | |
|                     decoded_line = line.decode('utf-8')
 | |
|                     resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
 | |
|                     yield 'data: {}\n'.format(json.dumps(resData))
 | |
|         return Response(generate(), mimetype='text/event-stream')
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     app.run(args.host, port=args.port)
 |