mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* imatrix: 1st version * imatrix: WIP * Cleanup * Update examples/imatrix/imatrix.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <ctime>
 | 
						|
#include <sstream>
 | 
						|
#include <thread>
 | 
						|
#include <mutex>
 | 
						|
#include <vector>
 | 
						|
#include <fstream>
 | 
						|
#include <unordered_map>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
struct Stats {
 | 
						|
    std::vector<float> values;
 | 
						|
    int ncall = 0;
 | 
						|
};
 | 
						|
 | 
						|
struct StatParams {
 | 
						|
    std::string ofile = "imatrix.dat";
 | 
						|
    int         n_output_frequency = 10;
 | 
						|
    int         verbosity = 1;
 | 
						|
    bool        collect_output_weight = false;
 | 
						|
};
 | 
						|
 | 
						|
class IMatrixCollector {
 | 
						|
public:
 | 
						|
    IMatrixCollector() = default;
 | 
						|
    void set_parameters(StatParams&& params) { m_params = std::move(params); }
 | 
						|
    void collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1);
 | 
						|
    void save_imatrix() const;
 | 
						|
private:
 | 
						|
    std::unordered_map<std::string, Stats> m_stats;
 | 
						|
    StatParams                             m_params;
 | 
						|
    std::mutex                             m_mutex;
 | 
						|
    int                                    m_last_call = 0;
 | 
						|
};
 | 
						|
 | 
						|
void IMatrixCollector::collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1) {
 | 
						|
    if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return;
 | 
						|
    if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return;
 | 
						|
    std::lock_guard<std::mutex> lock(m_mutex);
 | 
						|
    auto& e = m_stats[src0->name];
 | 
						|
    if (e.values.empty()) {
 | 
						|
        e.values.resize(src1->ne[0], 0);
 | 
						|
    }
 | 
						|
    else if (e.values.size() != (size_t)src1->ne[0]) {
 | 
						|
        fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
 | 
						|
        exit(1); //GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
    ++e.ncall;
 | 
						|
    if (m_params.verbosity > 1) {
 | 
						|
        printf("%s[%d]: %s, %d x %d, %d\n",__func__,m_last_call,src0->name,(int)src1->ne[0],(int)src1->ne[1],(int)src1->type);
 | 
						|
    }
 | 
						|
    for (int row = 0; row < (int)src1->ne[1]; ++row) {
 | 
						|
        const float * x = (const float *)src1->data + row * src1->ne[0];
 | 
						|
        for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | 
						|
            e.values[j] += x[j]*x[j];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (e.ncall > m_last_call) {
 | 
						|
        m_last_call = e.ncall;
 | 
						|
        if (m_last_call % m_params.n_output_frequency == 0) {
 | 
						|
            save_imatrix();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void IMatrixCollector::save_imatrix() const {
 | 
						|
    const char * fname = m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str();
 | 
						|
    std::ofstream out(fname, std::ios::binary);
 | 
						|
    int n_entries = m_stats.size();
 | 
						|
    out.write((const char*)&n_entries, sizeof(n_entries));
 | 
						|
    for (auto& p : m_stats) {
 | 
						|
        int len = p.first.size();
 | 
						|
        out.write((const char*)&len, sizeof(len));
 | 
						|
        out.write(p.first.c_str(), len);
 | 
						|
        out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
 | 
						|
        int nval = p.second.values.size();
 | 
						|
        out.write((const char*)&nval, sizeof(nval));
 | 
						|
        if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
 | 
						|
    }
 | 
						|
    if (m_params.verbosity > 0) {
 | 
						|
        fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static IMatrixCollector g_collector;
 | 
						|
 | 
						|
static void ik_collect_imatrix(const struct ggml_tensor * src0, const struct ggml_tensor * src1) {
 | 
						|
    g_collector.collect_imatrix(src0, src1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct results_log_softmax {
 | 
						|
    double log_softmax;
 | 
						|
    float  logit;
 | 
						|
    float  prob;
 | 
						|
};
 | 
						|
 | 
						|
static std::vector<float> softmax(const std::vector<float>& logits) {
 | 
						|
    std::vector<float> probs(logits.size());
 | 
						|
    float max_logit = logits[0];
 | 
						|
    for (float v : logits) {
 | 
						|
        max_logit = std::max(max_logit, v);
 | 
						|
    }
 | 
						|
    double sum_exp = 0.0;
 | 
						|
    for (size_t i = 0; i < logits.size(); i++) {
 | 
						|
        // Subtract the maximum logit value from the current logit value for numerical stability
 | 
						|
        const float logit = logits[i] - max_logit;
 | 
						|
        const float exp_logit = expf(logit);
 | 
						|
        sum_exp += exp_logit;
 | 
						|
        probs[i] = exp_logit;
 | 
						|
    }
 | 
						|
    for (size_t i = 0; i < probs.size(); i++) {
 | 
						|
        probs[i] /= sum_exp;
 | 
						|
    }
 | 
						|
    return probs;
 | 
						|
}
 | 
						|
 | 
						|
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
 | 
						|
    float max_logit = logits[0];
 | 
						|
    for (int i = 1; i < n_vocab; ++i) {
 | 
						|
        max_logit = std::max(max_logit, logits[i]);
 | 
						|
    }
 | 
						|
    double sum_exp = 0.0;
 | 
						|
    for (int i = 0; i < n_vocab; ++i) {
 | 
						|
        sum_exp += expf(logits[i] - max_logit);
 | 
						|
    }
 | 
						|
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
 | 
						|
}
 | 
						|
 | 
						|
static void process_logits(
 | 
						|
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
 | 
						|
    double & nll, double & nll2, float * logit_history, float * prob_history
 | 
						|
) {
 | 
						|
    std::mutex mutex;
 | 
						|
    int counter = 0;
 | 
						|
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
 | 
						|
        double local_nll  = 0;
 | 
						|
        double local_nll2 = 0;
 | 
						|
        while (true) {
 | 
						|
            std::unique_lock<std::mutex> lock(mutex);
 | 
						|
            int i = counter++;
 | 
						|
            if (i >= n_token) {
 | 
						|
                nll += local_nll; nll2 += local_nll2;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            lock.unlock();
 | 
						|
            const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
 | 
						|
            const double v = -results.log_softmax;
 | 
						|
            local_nll += v;
 | 
						|
            local_nll2 += v*v;
 | 
						|
 | 
						|
            logit_history[i] = results.logit;
 | 
						|
            prob_history[i]  = results.prob;
 | 
						|
        }
 | 
						|
    };
 | 
						|
    for (auto & w : workers) {
 | 
						|
        w = std::thread(compute);
 | 
						|
    }
 | 
						|
    compute();
 | 
						|
    for (auto & w : workers) {
 | 
						|
        w.join();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
 | 
						|
 | 
						|
    const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
 | 
						|
    const int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    auto tim1 = std::chrono::high_resolution_clock::now();
 | 
						|
    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
 | 
						|
 | 
						|
    std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
 | 
						|
 | 
						|
    auto tim2 = std::chrono::high_resolution_clock::now();
 | 
						|
    fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
 | 
						|
 | 
						|
    if (int(tokens.size()) < 2*n_ctx) {
 | 
						|
        fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
 | 
						|
                n_ctx);
 | 
						|
        fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<float> logit_history;
 | 
						|
    logit_history.resize(tokens.size());
 | 
						|
 | 
						|
    std::vector<float> prob_history;
 | 
						|
    prob_history.resize(tokens.size());
 | 
						|
 | 
						|
    const int n_chunk_max = tokens.size() / n_ctx;
 | 
						|
 | 
						|
    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
 | 
						|
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
 | 
						|
    const int n_batch = params.n_batch;
 | 
						|
 | 
						|
    int count = 0;
 | 
						|
    double nll = 0.0;
 | 
						|
    double nll2 = 0.0;
 | 
						|
 | 
						|
    fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
 | 
						|
 | 
						|
    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
 | 
						|
 | 
						|
    for (int i = 0; i < n_chunk; ++i) {
 | 
						|
        const int start =     i * n_ctx;
 | 
						|
        const int end   = start + n_ctx;
 | 
						|
 | 
						|
        const int num_batches = (n_ctx + n_batch - 1) / n_batch;
 | 
						|
 | 
						|
        std::vector<float> logits;
 | 
						|
 | 
						|
        const auto t_start = std::chrono::high_resolution_clock::now();
 | 
						|
 | 
						|
        // clear the KV cache
 | 
						|
        llama_kv_cache_clear(ctx);
 | 
						|
 | 
						|
        for (int j = 0; j < num_batches; ++j) {
 | 
						|
            const int batch_start = start + j * n_batch;
 | 
						|
            const int batch_size  = std::min(end - batch_start, n_batch);
 | 
						|
 | 
						|
            // save original token and restore it after eval
 | 
						|
            const auto token_org = tokens[batch_start];
 | 
						|
 | 
						|
            // add BOS token for the first batch of each chunk
 | 
						|
            if (add_bos && j == 0) {
 | 
						|
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
 | 
						|
            }
 | 
						|
 | 
						|
            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
 | 
						|
                fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            // restore the original token in case it was set to BOS
 | 
						|
            tokens[batch_start] = token_org;
 | 
						|
 | 
						|
            const auto * batch_logits = llama_get_logits(ctx);
 | 
						|
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | 
						|
        }
 | 
						|
 | 
						|
        const auto t_end = std::chrono::high_resolution_clock::now();
 | 
						|
 | 
						|
        if (i == 0) {
 | 
						|
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | 
						|
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | 
						|
            int total_seconds = (int)(t_total * n_chunk);
 | 
						|
            if (total_seconds >= 60*60) {
 | 
						|
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
 | 
						|
                total_seconds = total_seconds % (60*60);
 | 
						|
            }
 | 
						|
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
 | 
						|
        }
 | 
						|
 | 
						|
        const int first = n_ctx/2;
 | 
						|
        process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
 | 
						|
                       workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
 | 
						|
        count += n_ctx - first - 1;
 | 
						|
 | 
						|
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
						|
        fflush(stdout);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
 | 
						|
    nll2 /= count;
 | 
						|
    nll /= count;
 | 
						|
    const double ppl = exp(nll);
 | 
						|
    nll2 -= nll * nll;
 | 
						|
    if (nll2 > 0) {
 | 
						|
        nll2 = sqrt(nll2/(count-1));
 | 
						|
        printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
 | 
						|
    } else {
 | 
						|
        printf("Unexpected negative standard deviation of log(prob)\n");
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
 | 
						|
    StatParams sparams;
 | 
						|
    std::vector<char*> args;
 | 
						|
    args.push_back(argv[0]);
 | 
						|
    int iarg = 1;
 | 
						|
    for (; iarg < argc-1; ++iarg) {
 | 
						|
        std::string arg{argv[iarg]};
 | 
						|
        if (arg == "-o" || arg == "--output-file") {
 | 
						|
            sparams.ofile = argv[++iarg];
 | 
						|
        }
 | 
						|
        else if (arg == "-ofreq" || arg == "--output-frequency") {
 | 
						|
            sparams.n_output_frequency = std::stoi(argv[++iarg]);
 | 
						|
        }
 | 
						|
        else if (arg == "-ow" || arg == "--output-weight") {
 | 
						|
            sparams.collect_output_weight = std::stoi(argv[++iarg]);
 | 
						|
        }
 | 
						|
        else if (arg == "--verbosity") {
 | 
						|
            sparams.verbosity = std::stoi(argv[++iarg]);
 | 
						|
        } else {
 | 
						|
            args.push_back(argv[iarg]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (iarg < argc) {
 | 
						|
        args.push_back(argv[iarg]);
 | 
						|
    }
 | 
						|
 | 
						|
    gpt_params params;
 | 
						|
    params.n_batch = 512;
 | 
						|
    if (!gpt_params_parse(args.size(), args.data(), params)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    g_collector.set_parameters(std::move(sparams));
 | 
						|
 | 
						|
    ggml_set_imatrix_collection(ik_collect_imatrix);
 | 
						|
 | 
						|
    params.logits_all = true;
 | 
						|
    params.n_batch = std::min(params.n_batch, params.n_ctx);
 | 
						|
 | 
						|
    print_build_info();
 | 
						|
 | 
						|
    if (params.seed == LLAMA_DEFAULT_SEED) {
 | 
						|
        params.seed = time(NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);
 | 
						|
 | 
						|
    std::mt19937 rng(params.seed);
 | 
						|
    if (params.random_prompt) {
 | 
						|
        params.prompt = gpt_random_prompt(rng);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_backend_init(params.numa);
 | 
						|
 | 
						|
    llama_model * model;
 | 
						|
    llama_context * ctx;
 | 
						|
 | 
						|
    // load the model and apply lora adapter, if any
 | 
						|
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_ctx_train = llama_n_ctx_train(model);
 | 
						|
    if (params.n_ctx > n_ctx_train) {
 | 
						|
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | 
						|
                __func__, n_ctx_train, params.n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    bool OK = compute_imatrix(ctx, params);
 | 
						|
    if (!OK) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    g_collector.save_imatrix();
 | 
						|
 | 
						|
    llama_print_timings(ctx);
 | 
						|
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |