mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Convert a LLaMA model checkpoint to a ggml compatible file
 | |
| #
 | |
| # Load the model using Torch
 | |
| # Iterate over all variables and write them to a binary file.
 | |
| #
 | |
| # For each variable, write the following:
 | |
| #   - Number of dimensions (int)
 | |
| #   - Name length (int)
 | |
| #   - Dimensions (int[n_dims])
 | |
| #   - Name (char[name_length])
 | |
| #   - Data (float[n_dims])
 | |
| #
 | |
| # By default, the bigger matrices are converted to 16-bit floats.
 | |
| # This can be disabled by adding the "use-f32" CLI argument.
 | |
| #
 | |
| # At the start of the ggml file we write the model parameters
 | |
| # and vocabulary.
 | |
| #
 | |
| 
 | |
| import sys
 | |
| import json
 | |
| import struct
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
|     sys.exit(1)
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| fname_out = sys.argv[1] + "/ggml-model.bin"
 | |
| 
 | |
| fname_hparams   = sys.argv[1] + "/params.json"
 | |
| fname_model     = sys.argv[1] + "/consolidated.00.pth"
 | |
| fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
 | |
| 
 | |
| # possible data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
|         sys.exit(1)
 | |
|     fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
 | |
| 
 | |
| with open(fname_hparams, "r") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| tokenizer = SentencePieceProcessor(fname_tokenizer)
 | |
| 
 | |
| hparams.update({"vocab_size": tokenizer.vocab_size()})
 | |
| 
 | |
| print(hparams)
 | |
| 
 | |
| model = torch.load(fname_model, map_location="cpu")
 | |
| 
 | |
| fout = open(fname_out, "wb")
 | |
| 
 | |
| fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
 | |
| fout.write(struct.pack("i", hparams["vocab_size"]))
 | |
| fout.write(struct.pack("i", hparams["dim"]))
 | |
| fout.write(struct.pack("i", hparams["multiple_of"]))
 | |
| fout.write(struct.pack("i", hparams["n_heads"]))
 | |
| fout.write(struct.pack("i", hparams["n_layers"]))
 | |
| fout.write(struct.pack("i", 64)) # rot
 | |
| fout.write(struct.pack("i", ftype))
 | |
| 
 | |
| # Is this correct??
 | |
| for i in range(32000):
 | |
|     # TODO: this is probably wrong - not sure how this tokenizer works
 | |
|     text = tokenizer.decode([29889, i]).encode('utf-8')
 | |
|     # remove the first byte (it's always '.')
 | |
|     text = text[1:]
 | |
|     fout.write(struct.pack("i", len(text)))
 | |
|     fout.write(text)
 | |
| 
 | |
| for k, v in model.items():
 | |
|     name = k
 | |
|     shape = v.shape
 | |
| 
 | |
|     # skip layers.X.attention.inner_attention.rope.freqs
 | |
|     if name[-5:] == "freqs":
 | |
|         continue
 | |
| 
 | |
|     print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
 | |
| 
 | |
|     #data = tf.train.load_variable(dir_model, name).squeeze()
 | |
|     data = v.numpy().squeeze()
 | |
|     n_dims = len(data.shape);
 | |
| 
 | |
|     # for efficiency - transpose some matrices
 | |
|     # "model/h.*/attn/c_attn/w"
 | |
|     # "model/h.*/attn/c_proj/w"
 | |
|     # "model/h.*/mlp/c_fc/w"
 | |
|     # "model/h.*/mlp/c_proj/w"
 | |
|     #if name[-14:] == "/attn/c_attn/w" or \
 | |
|     #   name[-14:] == "/attn/c_proj/w" or \
 | |
|     #   name[-11:] == "/mlp/c_fc/w" or \
 | |
|     #   name[-13:] == "/mlp/c_proj/w":
 | |
|     #    print("  Transposing")
 | |
|     #    data = data.transpose()
 | |
| 
 | |
|     dshape = data.shape
 | |
| 
 | |
|     # default type is fp16
 | |
|     ftype_cur = 1
 | |
|     if ftype == 0 or n_dims == 1:
 | |
|         print("  Converting to float32")
 | |
|         data = data.astype(np.float32)
 | |
|         ftype_cur = 0
 | |
| 
 | |
|     # header
 | |
|     str = name.encode('utf-8')
 | |
|     fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
 | |
|     for i in range(n_dims):
 | |
|         fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
 | |
|     fout.write(str);
 | |
| 
 | |
|     # data
 | |
|     data.tofile(fout)
 | |
| 
 | |
| fout.close()
 | |
| 
 | |
| print("Done. Output file: " + fname_out)
 | |
| print("")
 | 
