mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1552 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1552 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #if defined(_MSC_VER)
 | |
| #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
 | |
| #endif
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "gguf.h"
 | |
| 
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cinttypes>
 | |
| #include <climits>
 | |
| #include <cmath>
 | |
| #include <codecvt>
 | |
| #include <cstdarg>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <filesystem>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <regex>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <unordered_map>
 | |
| #include <unordered_set>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(__APPLE__) && defined(__MACH__)
 | |
| #include <sys/types.h>
 | |
| #include <sys/sysctl.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #   define NOMINMAX
 | |
| #endif
 | |
| #include <locale>
 | |
| #include <windows.h>
 | |
| #include <fcntl.h>
 | |
| #include <io.h>
 | |
| #else
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/stat.h>
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // CPU utils
 | |
| //
 | |
| 
 | |
| int32_t cpu_get_num_physical_cores() {
 | |
| #ifdef __linux__
 | |
|     // enumerate the set of thread siblings, num entries is num cores
 | |
|     std::unordered_set<std::string> siblings;
 | |
|     for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
 | |
|         std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
 | |
|             + std::to_string(cpu) + "/topology/thread_siblings");
 | |
|         if (!thread_siblings.is_open()) {
 | |
|             break; // no more cpus
 | |
|         }
 | |
|         std::string line;
 | |
|         if (std::getline(thread_siblings, line)) {
 | |
|             siblings.insert(line);
 | |
|         }
 | |
|     }
 | |
|     if (!siblings.empty()) {
 | |
|         return static_cast<int32_t>(siblings.size());
 | |
|     }
 | |
| #elif defined(__APPLE__) && defined(__MACH__)
 | |
|     int32_t num_physical_cores;
 | |
|     size_t len = sizeof(num_physical_cores);
 | |
|     int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
 | |
|     if (result == 0) {
 | |
|         return num_physical_cores;
 | |
|     }
 | |
|     result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
 | |
|     if (result == 0) {
 | |
|         return num_physical_cores;
 | |
|     }
 | |
| #elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
 | |
|     // TODO: windows + arm64 + mingw64
 | |
|     unsigned int n_threads_win = std::thread::hardware_concurrency();
 | |
|     unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
 | |
| 
 | |
|     DWORD buffer_size = 0;
 | |
|     if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
 | |
|         if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
 | |
|             return default_threads;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<char> buffer(buffer_size);
 | |
|     if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
 | |
|         return default_threads;
 | |
|     }
 | |
| 
 | |
|     int32_t num_physical_cores = 0;
 | |
|     PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
 | |
|     while (buffer_size > 0) {
 | |
|         if (info->Relationship == RelationProcessorCore) {
 | |
|             num_physical_cores += info->Processor.GroupCount;
 | |
|         }
 | |
|         buffer_size -= info->Size;
 | |
|         info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
 | |
|     }
 | |
| 
 | |
|     return num_physical_cores > 0 ? num_physical_cores : default_threads;
 | |
| #endif
 | |
|     unsigned int n_threads = std::thread::hardware_concurrency();
 | |
|     return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
 | |
| }
 | |
| 
 | |
| #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
 | |
| #include <pthread.h>
 | |
| 
 | |
| static void cpuid(unsigned leaf, unsigned subleaf,
 | |
|                   unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
 | |
|     __asm__("movq\t%%rbx,%%rsi\n\t"
 | |
|             "cpuid\n\t"
 | |
|             "xchgq\t%%rbx,%%rsi"
 | |
|             : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
 | |
|             : "0"(leaf), "2"(subleaf));
 | |
| }
 | |
| 
 | |
| static int pin_cpu(int cpu) {
 | |
|     cpu_set_t mask;
 | |
|     CPU_ZERO(&mask);
 | |
|     CPU_SET(cpu, &mask);
 | |
|     return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
 | |
| }
 | |
| 
 | |
| static bool is_hybrid_cpu(void) {
 | |
|     unsigned eax, ebx, ecx, edx;
 | |
|     cpuid(7, 0, &eax, &ebx, &ecx, &edx);
 | |
|     return !!(edx & (1u << 15));
 | |
| }
 | |
| 
 | |
| static bool is_running_on_efficiency_core(void) {
 | |
|     unsigned eax, ebx, ecx, edx;
 | |
|     cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
 | |
|     int intel_atom = 0x20;
 | |
|     int core_type = (eax & 0xff000000u) >> 24;
 | |
|     return core_type == intel_atom;
 | |
| }
 | |
| 
 | |
| static int cpu_count_math_cpus(int n_cpu) {
 | |
|     int result = 0;
 | |
|     for (int cpu = 0; cpu < n_cpu; ++cpu) {
 | |
|         if (pin_cpu(cpu)) {
 | |
|             return -1;
 | |
|         }
 | |
|         if (is_running_on_efficiency_core()) {
 | |
|             continue; // efficiency cores harm lockstep threading
 | |
|         }
 | |
|         ++cpu; // hyperthreading isn't useful for linear algebra
 | |
|         ++result;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #endif // __x86_64__ && __linux__
 | |
| 
 | |
| /**
 | |
|  * Returns number of CPUs on system that are useful for math.
 | |
|  */
 | |
| int32_t cpu_get_num_math() {
 | |
| #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
 | |
|     int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
 | |
|     if (n_cpu < 1) {
 | |
|         return cpu_get_num_physical_cores();
 | |
|     }
 | |
|     if (is_hybrid_cpu()) {
 | |
|         cpu_set_t affinity;
 | |
|         if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
 | |
|             int result = cpu_count_math_cpus(n_cpu);
 | |
|             pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
 | |
|             if (result > 0) {
 | |
|                 return result;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return cpu_get_num_physical_cores();
 | |
| }
 | |
| 
 | |
| // Helper for setting process priority
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| 
 | |
| bool set_process_priority(enum ggml_sched_priority prio) {
 | |
|     if (prio == GGML_SCHED_PRIO_NORMAL) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     DWORD p = NORMAL_PRIORITY_CLASS;
 | |
|     switch (prio) {
 | |
|         case GGML_SCHED_PRIO_LOW:      p = BELOW_NORMAL_PRIORITY_CLASS; break;
 | |
|         case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
 | |
|         case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
 | |
|         case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
 | |
|         case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
 | |
|     }
 | |
| 
 | |
|     if (!SetPriorityClass(GetCurrentProcess(), p)) {
 | |
|         LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #else // MacOS and POSIX
 | |
| #include <sys/types.h>
 | |
| #include <sys/resource.h>
 | |
| 
 | |
| bool set_process_priority(enum ggml_sched_priority prio) {
 | |
|     if (prio == GGML_SCHED_PRIO_NORMAL) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     int p = 0;
 | |
|     switch (prio) {
 | |
|         case GGML_SCHED_PRIO_LOW:      p =  5;  break;
 | |
|         case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
 | |
|         case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
 | |
|         case GGML_SCHED_PRIO_HIGH:     p = -10; break;
 | |
|         case GGML_SCHED_PRIO_REALTIME: p = -20; break;
 | |
|     }
 | |
| 
 | |
|     if (!setpriority(PRIO_PROCESS, 0, p)) {
 | |
|         LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| 
 | |
| 
 | |
| void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
 | |
|     int32_t n_set = 0;
 | |
| 
 | |
|     if (cpuparams.n_threads < 0) {
 | |
|         // Assuming everything about cpuparams is invalid
 | |
|         if (role_model != nullptr) {
 | |
|             cpuparams = *role_model;
 | |
|         } else {
 | |
|             cpuparams.n_threads = cpu_get_num_math();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
 | |
|         if (cpuparams.cpumask[i]) {
 | |
|             n_set++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n_set && n_set < cpuparams.n_threads) {
 | |
|         // Not enough set bits, may experience performance issues.
 | |
|         LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
 | |
|     size_t dash_loc = range.find('-');
 | |
|     if (dash_loc == std::string::npos) {
 | |
|         LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     size_t start_i;
 | |
|     size_t end_i;
 | |
| 
 | |
|     if (dash_loc == 0) {
 | |
|         start_i = 0;
 | |
|     } else {
 | |
|         start_i = std::stoull(range.substr(0, dash_loc));
 | |
|         if (start_i >= GGML_MAX_N_THREADS) {
 | |
|             LOG_ERR("Start index out of bounds!\n");
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dash_loc == range.length() - 1) {
 | |
|         end_i = GGML_MAX_N_THREADS - 1;
 | |
|     } else {
 | |
|         end_i = std::stoull(range.substr(dash_loc + 1));
 | |
|         if (end_i >= GGML_MAX_N_THREADS) {
 | |
|             LOG_ERR("End index out of bounds!\n");
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = start_i; i <= end_i; i++) {
 | |
|         boolmask[i] = true;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
 | |
|     // Discard potential 0x prefix
 | |
|     size_t start_i = 0;
 | |
|     if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
 | |
|         start_i = 2;
 | |
|     }
 | |
| 
 | |
|     size_t num_digits = mask.length() - start_i;
 | |
|     if (num_digits > 128) num_digits = 128;
 | |
| 
 | |
|     size_t end_i = num_digits + start_i;
 | |
| 
 | |
|     for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
 | |
|         char c = mask.at(i);
 | |
|         int8_t id = c;
 | |
| 
 | |
|         if ((c >= '0' && c <= '9')) {
 | |
|             id -= '0';
 | |
|         } else if (c >= 'a' && c <= 'f') {
 | |
|             id -= 'a' - 10;
 | |
|         } else if (c >= 'A' && c <= 'F') {
 | |
|             id -= 'A' - 10;
 | |
|         } else {
 | |
|             LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
 | |
|         boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
 | |
|         boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
 | |
|         boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void common_init() {
 | |
|     llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
 | |
|         if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
 | |
|             common_log_add(common_log_main(), level, "%s", text);
 | |
|         }
 | |
|     }, NULL);
 | |
| 
 | |
| #ifdef NDEBUG
 | |
|     const char * build_type = "";
 | |
| #else
 | |
|     const char * build_type = " (debug)";
 | |
| #endif
 | |
| 
 | |
|     LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
 | |
| }
 | |
| 
 | |
| std::string common_params_get_system_info(const common_params & params) {
 | |
|     std::ostringstream os;
 | |
| 
 | |
|     os << "system_info: n_threads = " << params.cpuparams.n_threads;
 | |
|     if (params.cpuparams_batch.n_threads != -1) {
 | |
|         os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
 | |
|     }
 | |
| #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
 | |
|     // TODO: windows + arm64 + mingw64
 | |
|     DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
 | |
|     os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
 | |
| #else
 | |
|     os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
 | |
| #endif
 | |
| 
 | |
|     return os.str();
 | |
| }
 | |
| 
 | |
| //
 | |
| // String utils
 | |
| //
 | |
| 
 | |
| std::string string_format(const char * fmt, ...) {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     int size = vsnprintf(NULL, 0, fmt, ap);
 | |
|     GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
 | |
|     std::vector<char> buf(size + 1);
 | |
|     int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
 | |
|     GGML_ASSERT(size2 == size);
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
|     return std::string(buf.data(), size);
 | |
| }
 | |
| 
 | |
| std::string string_strip(const std::string & str) {
 | |
|     size_t start = 0;
 | |
|     size_t end = str.size();
 | |
|     while (start < end && std::isspace(str[start])) {
 | |
|         start++;
 | |
|     }
 | |
|     while (end > start && std::isspace(str[end - 1])) {
 | |
|         end--;
 | |
|     }
 | |
|     return str.substr(start, end - start);
 | |
| }
 | |
| 
 | |
| std::string string_get_sortable_timestamp() {
 | |
|     using clock = std::chrono::system_clock;
 | |
| 
 | |
|     const clock::time_point current_time = clock::now();
 | |
|     const time_t as_time_t = clock::to_time_t(current_time);
 | |
|     char timestamp_no_ns[100];
 | |
|     std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
 | |
| 
 | |
|     const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
 | |
|         current_time.time_since_epoch() % 1000000000).count();
 | |
|     char timestamp_ns[11];
 | |
|     snprintf(timestamp_ns, 11, "%09" PRId64, ns);
 | |
| 
 | |
|     return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
 | |
| }
 | |
| 
 | |
| void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
 | |
|     if (search.empty()) {
 | |
|         return;
 | |
|     }
 | |
|     std::string builder;
 | |
|     builder.reserve(s.length());
 | |
|     size_t pos = 0;
 | |
|     size_t last_pos = 0;
 | |
|     while ((pos = s.find(search, last_pos)) != std::string::npos) {
 | |
|         builder.append(s, last_pos, pos - last_pos);
 | |
|         builder.append(replace);
 | |
|         last_pos = pos + search.length();
 | |
|     }
 | |
|     builder.append(s, last_pos, std::string::npos);
 | |
|     s = std::move(builder);
 | |
| }
 | |
| 
 | |
| bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
 | |
|     return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
 | |
| }
 | |
| size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
 | |
|     if (!str.empty() && !stop.empty()) {
 | |
|         const char text_last_char = str.back();
 | |
|         for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
 | |
|             if (stop[char_index] == text_last_char) {
 | |
|                 const auto current_partial = stop.substr(0, char_index + 1);
 | |
|                 if (string_ends_with(str, current_partial)) {
 | |
|                     return str.size() - char_index - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return std::string::npos;
 | |
| }
 | |
| 
 | |
| std::string regex_escape(const std::string & s) {
 | |
|     static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
 | |
|     return std::regex_replace(s, special_chars, "\\$&");
 | |
| }
 | |
| 
 | |
| std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
 | |
|     std::ostringstream result;
 | |
|     for (size_t i = 0; i < values.size(); ++i) {
 | |
|         if (i > 0) {
 | |
|             result << separator;
 | |
|         }
 | |
|         result << values[i];
 | |
|     }
 | |
|     return result.str();
 | |
| }
 | |
| 
 | |
| std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
 | |
|     std::vector<std::string> parts;
 | |
|     size_t start = 0;
 | |
|     size_t end = str.find(delimiter);
 | |
| 
 | |
|     while (end != std::string::npos) {
 | |
|         parts.push_back(str.substr(start, end - start));
 | |
|         start = end + delimiter.length();
 | |
|         end = str.find(delimiter, start);
 | |
|     }
 | |
| 
 | |
|     parts.push_back(str.substr(start));
 | |
| 
 | |
|     return parts;
 | |
| }
 | |
| 
 | |
| std::string string_repeat(const std::string & str, size_t n) {
 | |
|     if (n == 0) {
 | |
|         return "";
 | |
|     }
 | |
| 
 | |
|     std::string result;
 | |
|     result.reserve(str.length() * n);
 | |
| 
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         result += str;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string string_from(bool value) {
 | |
|     return value ? "true" : "false";
 | |
| }
 | |
| 
 | |
| std::string string_from(const std::vector<int> & values) {
 | |
|     std::stringstream buf;
 | |
| 
 | |
|     buf << "[ ";
 | |
|     bool first = true;
 | |
|     for (auto e : values) {
 | |
|         if (first) {
 | |
|             first = false;
 | |
|         } else {
 | |
|             buf << ", ";
 | |
|         }
 | |
|         buf << std::to_string(e);
 | |
|     }
 | |
|     buf << " ]";
 | |
| 
 | |
|     return buf.str();
 | |
| }
 | |
| 
 | |
| std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
 | |
|     std::stringstream buf;
 | |
| 
 | |
|     buf << "[ ";
 | |
| 
 | |
|     bool first = true;
 | |
|     for (const auto & token : tokens) {
 | |
|         if (!first) {
 | |
|             buf << ", ";
 | |
|         } else {
 | |
|             first = false;
 | |
|         }
 | |
| 
 | |
|         auto detokenized = common_token_to_piece(ctx, token);
 | |
| 
 | |
|         detokenized.erase(
 | |
|             std::remove_if(
 | |
|                 detokenized.begin(),
 | |
|                 detokenized.end(),
 | |
|                 [](const unsigned char c) { return !std::isprint(c); }),
 | |
|             detokenized.end());
 | |
| 
 | |
|         buf << "'" << detokenized << "'"
 | |
|             << ":" << std::to_string(token);
 | |
|     }
 | |
| 
 | |
|     buf << " ]";
 | |
| 
 | |
|     return buf.str();
 | |
| }
 | |
| 
 | |
| std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
 | |
|     std::stringstream buf;
 | |
| 
 | |
|     buf << "[ ";
 | |
| 
 | |
|     bool first = true;
 | |
|     for (int i = 0; i < batch.n_tokens; ++i) {
 | |
|         if (!first) {
 | |
|             buf << ", ";
 | |
|         } else {
 | |
|             first = false;
 | |
|         }
 | |
| 
 | |
|         auto detokenized = common_token_to_piece(ctx, batch.token[i]);
 | |
| 
 | |
|         detokenized.erase(
 | |
|                 std::remove_if(
 | |
|                     detokenized.begin(),
 | |
|                     detokenized.end(),
 | |
|                     [](const unsigned char c) { return !std::isprint(c); }),
 | |
|                 detokenized.end());
 | |
| 
 | |
|         buf << "\n"          << std::to_string(i)
 | |
|             << ", token '"   << detokenized << "'"
 | |
|             << ", pos "      << std::to_string(batch.pos[i])
 | |
|             << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
 | |
|             << ", seq_id "   << std::to_string(batch.seq_id[i][0])
 | |
|             << ", logits "   << std::to_string(batch.logits[i]);
 | |
|     }
 | |
| 
 | |
|     buf << " ]";
 | |
| 
 | |
|     return buf.str();
 | |
| }
 | |
| 
 | |
| void string_process_escapes(std::string & input) {
 | |
|     std::size_t input_len = input.length();
 | |
|     std::size_t output_idx = 0;
 | |
| 
 | |
|     for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
 | |
|         if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
 | |
|             switch (input[++input_idx]) {
 | |
|                 case 'n':  input[output_idx++] = '\n'; break;
 | |
|                 case 'r':  input[output_idx++] = '\r'; break;
 | |
|                 case 't':  input[output_idx++] = '\t'; break;
 | |
|                 case '\'': input[output_idx++] = '\''; break;
 | |
|                 case '\"': input[output_idx++] = '\"'; break;
 | |
|                 case '\\': input[output_idx++] = '\\'; break;
 | |
|                 case 'x':
 | |
|                     // Handle \x12, etc
 | |
|                     if (input_idx + 2 < input_len) {
 | |
|                         const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
 | |
|                         char *err_p = nullptr;
 | |
|                         const long val = std::strtol(x, &err_p, 16);
 | |
|                         if (err_p == x + 2) {
 | |
|                             input_idx += 2;
 | |
|                             input[output_idx++] = char(val);
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     // fall through
 | |
|                 default:   input[output_idx++] = '\\';
 | |
|                            input[output_idx++] = input[input_idx]; break;
 | |
|             }
 | |
|         } else {
 | |
|             input[output_idx++] = input[input_idx];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     input.resize(output_idx);
 | |
| }
 | |
| 
 | |
| bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
 | |
|     const char * sep = strchr(data, '=');
 | |
|     if (sep == nullptr || sep - data >= 128) {
 | |
|         LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
 | |
|         return false;
 | |
|     }
 | |
|     llama_model_kv_override kvo;
 | |
|     std::strncpy(kvo.key, data, sep - data);
 | |
|     kvo.key[sep - data] = 0;
 | |
|     sep++;
 | |
|     if (strncmp(sep, "int:", 4) == 0) {
 | |
|         sep += 4;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
 | |
|         kvo.val_i64 = std::atol(sep);
 | |
|     } else if (strncmp(sep, "float:", 6) == 0) {
 | |
|         sep += 6;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
 | |
|         kvo.val_f64 = std::atof(sep);
 | |
|     } else if (strncmp(sep, "bool:", 5) == 0) {
 | |
|         sep += 5;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
 | |
|         if (std::strcmp(sep, "true") == 0) {
 | |
|             kvo.val_bool = true;
 | |
|         } else if (std::strcmp(sep, "false") == 0) {
 | |
|             kvo.val_bool = false;
 | |
|         } else {
 | |
|             LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
 | |
|             return false;
 | |
|         }
 | |
|     } else if (strncmp(sep, "str:", 4) == 0) {
 | |
|         sep += 4;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
 | |
|         if (strlen(sep) > 127) {
 | |
|             LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
 | |
|             return false;
 | |
|         }
 | |
|         strncpy(kvo.val_str, sep, 127);
 | |
|         kvo.val_str[127] = '\0';
 | |
|     } else {
 | |
|         LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
 | |
|         return false;
 | |
|     }
 | |
|     overrides.emplace_back(std::move(kvo));
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Filesystem utils
 | |
| //
 | |
| 
 | |
| // Validate if a filename is safe to use
 | |
| // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
 | |
| bool fs_validate_filename(const std::string & filename) {
 | |
|     if (!filename.length()) {
 | |
|         // Empty filename invalid
 | |
|         return false;
 | |
|     }
 | |
|     if (filename.length() > 255) {
 | |
|         // Limit at common largest possible filename on Linux filesystems
 | |
|         // to avoid unnecessary further validation
 | |
|         // (On systems with smaller limits it will be caught by the OS)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     std::u32string filename_utf32;
 | |
|     try {
 | |
| #if defined(__clang__)
 | |
|         // disable C++17 deprecation warning for std::codecvt_utf8
 | |
| #    pragma clang diagnostic push
 | |
| #    pragma clang diagnostic ignored "-Wdeprecated-declarations"
 | |
| #elif defined(__GNUC__)
 | |
| #    pragma GCC diagnostic push
 | |
| #    pragma GCC diagnostic ignored "-Wdeprecated-declarations"
 | |
| #endif
 | |
| 
 | |
|         std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
 | |
| 
 | |
| #if defined(__clang__)
 | |
| #    pragma clang diagnostic pop
 | |
| #elif defined(__GNUC__)
 | |
| #    pragma GCC diagnostic pop
 | |
| #endif
 | |
| 
 | |
|         filename_utf32 = converter.from_bytes(filename);
 | |
| 
 | |
|         // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
 | |
|         // or invalid encodings were encountered. Reject such attempts
 | |
|         std::string filename_reencoded = converter.to_bytes(filename_utf32);
 | |
|         if (filename_reencoded != filename) {
 | |
|             return false;
 | |
|         }
 | |
|     } catch (const std::exception &) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Check for forbidden codepoints:
 | |
|     // - Control characters
 | |
|     // - Unicode equivalents of illegal characters
 | |
|     // - UTF-16 surrogate pairs
 | |
|     // - UTF-8 replacement character
 | |
|     // - Byte order mark (BOM)
 | |
|     // - Illegal characters: / \ : * ? " < > |
 | |
|     for (char32_t c : filename_utf32) {
 | |
|         if (c <= 0x1F // Control characters (C0)
 | |
|             || c == 0x7F // Control characters (DEL)
 | |
|             || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
 | |
|             || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
 | |
|             || c == 0x2215 // Division Slash (forward slash equivalent)
 | |
|             || c == 0x2216 // Set Minus (backslash equivalent)
 | |
|             || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
 | |
|             || c == 0xFFFD // Replacement Character (UTF-8)
 | |
|             || c == 0xFEFF // Byte Order Mark (BOM)
 | |
|             || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
 | |
|             || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
 | |
|     // Unicode and other whitespace is not affected, only 0x20 space
 | |
|     if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
 | |
|     if (filename.find("..") != std::string::npos) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Reject "."
 | |
|     if (filename == ".") {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| 
 | |
| // returns true if successful, false otherwise
 | |
| bool fs_create_directory_with_parents(const std::string & path) {
 | |
| #ifdef _WIN32
 | |
|     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
 | |
|     std::wstring wpath = converter.from_bytes(path);
 | |
| 
 | |
|     // if the path already exists, check whether it's a directory
 | |
|     const DWORD attributes = GetFileAttributesW(wpath.c_str());
 | |
|     if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     size_t pos_slash = 0;
 | |
| 
 | |
|     // process path from front to back, procedurally creating directories
 | |
|     while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
 | |
|         const std::wstring subpath = wpath.substr(0, pos_slash);
 | |
| 
 | |
|         pos_slash += 1;
 | |
| 
 | |
|         // skip the drive letter, in some systems it can return an access denied error
 | |
|         if (subpath.length() == 2 && subpath[1] == ':') {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const bool success = CreateDirectoryW(subpath.c_str(), NULL);
 | |
| 
 | |
|         if (!success) {
 | |
|             const DWORD error = GetLastError();
 | |
| 
 | |
|             // if the path already exists, ensure that it's a directory
 | |
|             if (error == ERROR_ALREADY_EXISTS) {
 | |
|                 const DWORD attributes = GetFileAttributesW(subpath.c_str());
 | |
|                 if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
 | |
|                     return false;
 | |
|                 }
 | |
|             } else {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| #else
 | |
|     // if the path already exists, check whether it's a directory
 | |
|     struct stat info;
 | |
|     if (stat(path.c_str(), &info) == 0) {
 | |
|         return S_ISDIR(info.st_mode);
 | |
|     }
 | |
| 
 | |
|     size_t pos_slash = 1; // skip leading slashes for directory creation
 | |
| 
 | |
|     // process path from front to back, procedurally creating directories
 | |
|     while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
 | |
|         const std::string subpath = path.substr(0, pos_slash);
 | |
|         struct stat info;
 | |
| 
 | |
|         // if the path already exists, ensure that it's a directory
 | |
|         if (stat(subpath.c_str(), &info) == 0) {
 | |
|             if (!S_ISDIR(info.st_mode)) {
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             // create parent directories
 | |
|             const int ret = mkdir(subpath.c_str(), 0755);
 | |
|             if (ret != 0) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pos_slash += 1;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| #endif // _WIN32
 | |
| }
 | |
| 
 | |
| std::string fs_get_cache_directory() {
 | |
|     std::string cache_directory = "";
 | |
|     auto ensure_trailing_slash = [](std::string p) {
 | |
|         // Make sure to add trailing slash
 | |
|         if (p.back() != DIRECTORY_SEPARATOR) {
 | |
|             p += DIRECTORY_SEPARATOR;
 | |
|         }
 | |
|         return p;
 | |
|     };
 | |
|     if (getenv("LLAMA_CACHE")) {
 | |
|         cache_directory = std::getenv("LLAMA_CACHE");
 | |
|     } else {
 | |
| #if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
 | |
|         if (std::getenv("XDG_CACHE_HOME")) {
 | |
|             cache_directory = std::getenv("XDG_CACHE_HOME");
 | |
|         } else {
 | |
|             cache_directory = std::getenv("HOME") + std::string("/.cache/");
 | |
|         }
 | |
| #elif defined(__APPLE__)
 | |
|         cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
 | |
| #elif defined(_WIN32)
 | |
|         cache_directory = std::getenv("LOCALAPPDATA");
 | |
| #else
 | |
| #  error Unknown architecture
 | |
| #endif
 | |
|         cache_directory = ensure_trailing_slash(cache_directory);
 | |
|         cache_directory += "llama.cpp";
 | |
|     }
 | |
|     return ensure_trailing_slash(cache_directory);
 | |
| }
 | |
| 
 | |
| std::string fs_get_cache_file(const std::string & filename) {
 | |
|     GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
 | |
|     std::string cache_directory = fs_get_cache_directory();
 | |
|     const bool success = fs_create_directory_with_parents(cache_directory);
 | |
|     if (!success) {
 | |
|         throw std::runtime_error("failed to create cache directory: " + cache_directory);
 | |
|     }
 | |
|     return cache_directory + filename;
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| struct common_init_result common_init_from_params(common_params & params) {
 | |
|     common_init_result iparams;
 | |
|     auto mparams = common_model_params_to_llama(params);
 | |
| 
 | |
|     llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
 | |
|         return iparams;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     auto cparams = common_context_params_to_llama(params);
 | |
| 
 | |
|     llama_context * lctx = llama_init_from_model(model, cparams);
 | |
|     if (lctx == NULL) {
 | |
|         LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
 | |
|         llama_model_free(model);
 | |
|         return iparams;
 | |
|     }
 | |
| 
 | |
|     if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
 | |
|         LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
 | |
|         params.ctx_shift = false;
 | |
|     }
 | |
| 
 | |
|     if (!params.control_vectors.empty()) {
 | |
|         if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
 | |
|         if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
 | |
| 
 | |
|         const auto cvec = common_control_vector_load(params.control_vectors);
 | |
|         if (cvec.n_embd == -1) {
 | |
|             llama_free(lctx);
 | |
|             llama_model_free(model);
 | |
| 
 | |
|             return iparams;
 | |
|         }
 | |
| 
 | |
|         int err = llama_apply_adapter_cvec(
 | |
|                 lctx,
 | |
|                 cvec.data.data(),
 | |
|                 cvec.data.size(),
 | |
|                 cvec.n_embd,
 | |
|                 params.control_vector_layer_start,
 | |
|                 params.control_vector_layer_end);
 | |
|         if (err) {
 | |
|             llama_free(lctx);
 | |
|             llama_model_free(model);
 | |
| 
 | |
|             return iparams;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
 | |
|         bool ok = true;
 | |
| 
 | |
|         if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
 | |
|             LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
 | |
|             ok = false;
 | |
|         }
 | |
| 
 | |
|         bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
 | |
|         bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
 | |
| 
 | |
|         if (!has_eos && !has_sep) {
 | |
|             LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
 | |
|             ok = false;
 | |
|         } else if (!has_eos) {
 | |
|             LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
 | |
|         } else if (!has_sep) {
 | |
|             LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
 | |
|             ok = false;
 | |
|         }
 | |
| 
 | |
|         if (!ok) {
 | |
|             llama_free(lctx);
 | |
|             llama_model_free(model);
 | |
| 
 | |
|             return iparams;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load and optionally apply lora adapters
 | |
|     for (auto & la : params.lora_adapters) {
 | |
|         llama_adapter_lora_ptr lora;
 | |
|         lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
 | |
|         if (lora == nullptr) {
 | |
|             LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
 | |
|             llama_free(lctx);
 | |
|             llama_model_free(model);
 | |
|             return iparams;
 | |
|         }
 | |
| 
 | |
|         la.ptr = lora.get();
 | |
|         iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
 | |
|     }
 | |
| 
 | |
|     if (!params.lora_init_without_apply) {
 | |
|         common_set_adapter_lora(lctx, params.lora_adapters);
 | |
|     }
 | |
| 
 | |
|     if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
 | |
|         LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
 | |
|         params.sampling.ignore_eos = false;
 | |
|     }
 | |
| 
 | |
|     if (params.sampling.ignore_eos) {
 | |
|         for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
 | |
|             if (llama_vocab_is_eog(vocab, i)) {
 | |
|                 LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
 | |
|                 params.sampling.logit_bias.push_back({i, -INFINITY});
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.sampling.penalty_last_n == -1) {
 | |
|         LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
 | |
|         params.sampling.penalty_last_n = llama_n_ctx(lctx);
 | |
|     }
 | |
| 
 | |
|     if (params.sampling.dry_penalty_last_n == -1) {
 | |
|         LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
 | |
|         params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
 | |
|     }
 | |
| 
 | |
|     if (params.warmup) {
 | |
|         LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
 | |
| 
 | |
|         llama_set_warmup(lctx, true);
 | |
| 
 | |
|         std::vector<llama_token> tmp;
 | |
|         llama_token bos = llama_vocab_bos(vocab);
 | |
|         llama_token eos = llama_vocab_eos(vocab);
 | |
| 
 | |
|         // some models (e.g. T5) don't have a BOS token
 | |
|         if (bos != LLAMA_TOKEN_NULL) {
 | |
|             tmp.push_back(bos);
 | |
|         }
 | |
|         if (eos != LLAMA_TOKEN_NULL) {
 | |
|             tmp.push_back(eos);
 | |
|         }
 | |
|         if (tmp.empty()) {
 | |
|             tmp.push_back(0);
 | |
|         }
 | |
| 
 | |
|         if (llama_model_has_encoder(model)) {
 | |
|             llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
 | |
|             llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
 | |
|             if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
 | |
|                 decoder_start_token_id = bos;
 | |
|             }
 | |
|             tmp.clear();
 | |
|             tmp.push_back(decoder_start_token_id);
 | |
|         }
 | |
|         if (llama_model_has_decoder(model)) {
 | |
|             llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
 | |
|         }
 | |
|         llama_memory_clear(llama_get_memory(lctx), true);
 | |
|         llama_synchronize(lctx);
 | |
|         llama_perf_context_reset(lctx);
 | |
|         llama_set_warmup(lctx, false);
 | |
|     }
 | |
| 
 | |
|     iparams.model.reset(model);
 | |
|     iparams.context.reset(lctx);
 | |
| 
 | |
|     return iparams;
 | |
| }
 | |
| 
 | |
| std::string get_model_endpoint() {
 | |
|     const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
 | |
|     // We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
 | |
|     const char * hf_endpoint_env = getenv("HF_ENDPOINT");
 | |
|     const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
 | |
|     std::string model_endpoint = "https://huggingface.co/";
 | |
|     if (endpoint_env) {
 | |
|         model_endpoint = endpoint_env;
 | |
|         if (model_endpoint.back() != '/') model_endpoint += '/';
 | |
|     }
 | |
|     return model_endpoint;
 | |
| }
 | |
| 
 | |
| void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
 | |
|     llama_clear_adapter_lora(ctx);
 | |
|     for (auto & la : lora) {
 | |
|         if (la.scale != 0.0f) {
 | |
|             llama_set_adapter_lora(ctx, la.ptr, la.scale);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct llama_model_params common_model_params_to_llama(common_params & params) {
 | |
|     auto mparams = llama_model_default_params();
 | |
| 
 | |
|     if (!params.devices.empty()) {
 | |
|         mparams.devices = params.devices.data();
 | |
|     }
 | |
| 
 | |
|     if (params.n_gpu_layers != -1) {
 | |
|         mparams.n_gpu_layers = params.n_gpu_layers;
 | |
|     }
 | |
| 
 | |
|     mparams.main_gpu        = params.main_gpu;
 | |
|     mparams.split_mode      = params.split_mode;
 | |
|     mparams.tensor_split    = params.tensor_split;
 | |
|     mparams.use_mmap        = params.use_mmap;
 | |
|     mparams.use_mlock       = params.use_mlock;
 | |
|     mparams.check_tensors   = params.check_tensors;
 | |
| 
 | |
|     if (params.kv_overrides.empty()) {
 | |
|         mparams.kv_overrides = NULL;
 | |
|     } else {
 | |
|         GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
 | |
|         mparams.kv_overrides = params.kv_overrides.data();
 | |
|     }
 | |
| 
 | |
|     if (params.tensor_buft_overrides.empty()) {
 | |
|         mparams.tensor_buft_overrides = NULL;
 | |
|     } else {
 | |
|         GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
 | |
|         mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
 | |
|     }
 | |
| 
 | |
|     mparams.progress_callback           = params.load_progress_callback;
 | |
|     mparams.progress_callback_user_data = params.load_progress_callback_user_data;
 | |
| 
 | |
|     return mparams;
 | |
| }
 | |
| 
 | |
| struct llama_context_params common_context_params_to_llama(const common_params & params) {
 | |
|     auto cparams = llama_context_default_params();
 | |
| 
 | |
|     cparams.n_ctx             = params.n_ctx;
 | |
|     cparams.n_seq_max         = params.n_parallel;
 | |
|     cparams.n_batch           = params.n_batch;
 | |
|     cparams.n_ubatch          = params.n_ubatch;
 | |
|     cparams.n_threads         = params.cpuparams.n_threads;
 | |
|     cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
 | |
|                                 params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
 | |
|     cparams.embeddings        = params.embedding;
 | |
|     cparams.rope_scaling_type = params.rope_scaling_type;
 | |
|     cparams.rope_freq_base    = params.rope_freq_base;
 | |
|     cparams.rope_freq_scale   = params.rope_freq_scale;
 | |
|     cparams.yarn_ext_factor   = params.yarn_ext_factor;
 | |
|     cparams.yarn_attn_factor  = params.yarn_attn_factor;
 | |
|     cparams.yarn_beta_fast    = params.yarn_beta_fast;
 | |
|     cparams.yarn_beta_slow    = params.yarn_beta_slow;
 | |
|     cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
 | |
|     cparams.pooling_type      = params.pooling_type;
 | |
|     cparams.attention_type    = params.attention_type;
 | |
|     cparams.defrag_thold      = params.defrag_thold;
 | |
|     cparams.cb_eval           = params.cb_eval;
 | |
|     cparams.cb_eval_user_data = params.cb_eval_user_data;
 | |
|     cparams.offload_kqv       = !params.no_kv_offload;
 | |
|     cparams.flash_attn        = params.flash_attn;
 | |
|     cparams.no_perf           = params.no_perf;
 | |
|     cparams.op_offload        = !params.no_op_offload;
 | |
|     cparams.swa_full          = params.swa_full;
 | |
|     cparams.graph_reuse       = params.graph_reuse;
 | |
| 
 | |
|     cparams.type_k = params.cache_type_k;
 | |
|     cparams.type_v = params.cache_type_v;
 | |
| 
 | |
|     return cparams;
 | |
| }
 | |
| 
 | |
| struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
 | |
|     struct ggml_threadpool_params tpp;
 | |
| 
 | |
|     ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
 | |
| 
 | |
|     if (params.mask_valid) {
 | |
|         std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS);
 | |
|     }
 | |
| 
 | |
|     tpp.prio       = params.priority;
 | |
|     tpp.poll       = params.poll;
 | |
|     tpp.strict_cpu = params.strict_cpu;
 | |
| 
 | |
|     return tpp;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Batch utils
 | |
| //
 | |
| 
 | |
| void common_batch_clear(struct llama_batch & batch) {
 | |
|     batch.n_tokens = 0;
 | |
| }
 | |
| 
 | |
| void common_batch_add(
 | |
|                  struct llama_batch & batch,
 | |
|                         llama_token   id,
 | |
|                           llama_pos   pos,
 | |
|     const std::vector<llama_seq_id> & seq_ids,
 | |
|                                bool   logits) {
 | |
|     GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");
 | |
| 
 | |
|     batch.token   [batch.n_tokens] = id;
 | |
|     batch.pos     [batch.n_tokens] = pos;
 | |
|     batch.n_seq_id[batch.n_tokens] = seq_ids.size();
 | |
|     for (size_t i = 0; i < seq_ids.size(); ++i) {
 | |
|         batch.seq_id[batch.n_tokens][i] = seq_ids[i];
 | |
|     }
 | |
|     batch.logits  [batch.n_tokens] = logits;
 | |
| 
 | |
|     batch.n_tokens++;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Token utils
 | |
| //
 | |
| 
 | |
| size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
 | |
|     size_t i;
 | |
|     for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
 | |
|     // check for empty sequences
 | |
|     if (a.empty() || b.empty()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // get the lengths of the input sequences
 | |
|     size_t a_len = a.size();
 | |
|     size_t b_len = b.size();
 | |
| 
 | |
|     // initialize the maximum length of the longest common subsequence (LCS)
 | |
|     size_t max_length = 0;
 | |
| 
 | |
|     // use two rows instead of a 2D matrix to optimize space
 | |
|     std::vector<size_t> prev_row(b_len + 1, 0);
 | |
|     std::vector<size_t> curr_row(b_len + 1, 0);
 | |
| 
 | |
|     // iterate through the elements of a
 | |
|     for (size_t i = 1; i <= a_len; i++) {
 | |
|         // iterate through the elements of b
 | |
|         for (size_t j = 1; j <= b_len; j++) {
 | |
|             // if elements at the current positions match
 | |
|             if (a[i - 1] == b[j - 1]) {
 | |
|                 // if it's the first element of either sequences, set LCS length to 1
 | |
|                 if (i == 1 || j == 1) {
 | |
|                     curr_row[j] = 1;
 | |
|                 } else {
 | |
|                     // increment LCS length by 1 compared to the previous element
 | |
|                     curr_row[j] = prev_row[j - 1] + 1;
 | |
|                 }
 | |
| 
 | |
|                 // update max_length if necessary
 | |
|                 if (curr_row[j] > max_length) {
 | |
|                     max_length = curr_row[j];
 | |
|                 }
 | |
|             } else {
 | |
|                 // reset LCS length if elements don't match
 | |
|                 curr_row[j] = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // update the previous row for the next iteration
 | |
|         prev_row = curr_row;
 | |
|     }
 | |
| 
 | |
|     // return the maximum length of the LCS
 | |
|     return max_length;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| std::vector<llama_token> common_tokenize(
 | |
|   const struct llama_context * ctx,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     const llama_model * model = llama_get_model(ctx);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
|     return common_tokenize(vocab, text, add_special, parse_special);
 | |
| }
 | |
| 
 | |
| std::vector<llama_token> common_tokenize(
 | |
|     const struct llama_vocab * vocab,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     // upper limit for the number of tokens
 | |
|     int n_tokens = text.length() + 2 * add_special;
 | |
|     std::vector<llama_token> result(n_tokens);
 | |
|     n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|     if (n_tokens == std::numeric_limits<int32_t>::min()) {
 | |
|         throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
 | |
|     }
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
 | |
|     const llama_model * model = llama_get_model(ctx);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
|     return common_token_to_piece(vocab, token, special);
 | |
| }
 | |
| 
 | |
| std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
 | |
|     std::string piece;
 | |
|     piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
 | |
|     const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|     if (n_chars < 0) {
 | |
|         piece.resize(-n_chars);
 | |
|         int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|         GGML_ASSERT(check == -n_chars);
 | |
|     }
 | |
|     else {
 | |
|         piece.resize(n_chars);
 | |
|     }
 | |
| 
 | |
|     return piece;
 | |
| }
 | |
| 
 | |
| std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
 | |
|     const llama_model * model = llama_get_model(ctx);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
|     return common_detokenize(vocab, tokens, special);
 | |
| }
 | |
| 
 | |
| std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
 | |
|     std::string text;
 | |
|     text.resize(std::max(text.capacity(), tokens.size()));
 | |
|     int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
 | |
|     if (n_chars < 0) {
 | |
|         text.resize(-n_chars);
 | |
|         n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
 | |
|         GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
 | |
|     }
 | |
| 
 | |
|     text.resize(n_chars);
 | |
| 
 | |
|     // NOTE: the original tokenizer decodes bytes after collecting the pieces.
 | |
|     return text;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Embedding utils
 | |
| //
 | |
| 
 | |
| void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
 | |
|     double sum = 0.0;
 | |
| 
 | |
|     switch (embd_norm) {
 | |
|         case -1: // no normalisation
 | |
|             sum = 1.0;
 | |
|             break;
 | |
|         case 0: // max absolute
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 if (sum < std::abs(inp[i])) {
 | |
|                     sum = std::abs(inp[i]);
 | |
|                 }
 | |
|             }
 | |
|             sum /= 32760.0; // make an int16 range
 | |
|             break;
 | |
|         case 2: // euclidean
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 sum += inp[i] * inp[i];
 | |
|             }
 | |
|             sum = std::sqrt(sum);
 | |
|             break;
 | |
|         default: // p-norm (euclidean is p-norm p=2)
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 sum += std::pow(std::abs(inp[i]), embd_norm);
 | |
|             }
 | |
|             sum = std::pow(sum, 1.0 / embd_norm);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         out[i] = inp[i] * norm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
 | |
|     double sum  = 0.0;
 | |
|     double sum1 = 0.0;
 | |
|     double sum2 = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         sum  += embd1[i] * embd2[i];
 | |
|         sum1 += embd1[i] * embd1[i];
 | |
|         sum2 += embd2[i] * embd2[i];
 | |
|     }
 | |
| 
 | |
|     // Handle the case where one or both vectors are zero vectors
 | |
|     if (sum1 == 0.0 || sum2 == 0.0) {
 | |
|         if (sum1 == 0.0 && sum2 == 0.0) {
 | |
|             return 1.0f; // two zero vectors are similar
 | |
|         }
 | |
|         return 0.0f;
 | |
|     }
 | |
| 
 | |
|     return sum / (sqrt(sum1) * sqrt(sum2));
 | |
| }
 | |
| 
 | |
| //
 | |
| // Control vector utils
 | |
| //
 | |
| 
 | |
| static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
 | |
|     common_control_vector_data result = { -1, {} };
 | |
| 
 | |
|     ggml_context * ctx = nullptr;
 | |
|     struct gguf_init_params meta_gguf_params = {
 | |
|         /* .no_alloc = */ false,
 | |
|         /* .ctx      = */ &ctx,
 | |
|     };
 | |
|     struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
 | |
|     if (!ctx_gguf) {
 | |
|         LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
 | |
|     if (n_tensors == 0) {
 | |
|         LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; i++) {
 | |
|         std::string name = gguf_get_tensor_name(ctx_gguf, i);
 | |
| 
 | |
|         int layer_idx = -1;
 | |
| 
 | |
|         // split on '.'
 | |
|         size_t dotpos = name.find('.');
 | |
|         if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
 | |
|             try {
 | |
|                 layer_idx = std::stoi(name.substr(dotpos + 1));
 | |
|             } catch (...) {
 | |
|                 layer_idx = -1;
 | |
|             }
 | |
|         }
 | |
|         if (layer_idx < 0) {
 | |
|             LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         } else if (layer_idx == 0) {
 | |
|             LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
 | |
|         if (tensor->type != GGML_TYPE_F32) {
 | |
|             LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
|         if (ggml_n_dims(tensor) != 1) {
 | |
|             LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (result.n_embd == -1) {
 | |
|             result.n_embd = ggml_nelements(tensor);
 | |
|         } else if (ggml_nelements(tensor) != result.n_embd) {
 | |
|             LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // extend if necessary - do not store data for layer 0 (it's not used)
 | |
|         result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
 | |
| 
 | |
|         const float * src = (const float *) tensor->data;
 | |
|         float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
 | |
|         for (int j = 0; j < result.n_embd; j++) {
 | |
|             dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (result.n_embd == -1) {
 | |
|         LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
 | |
|         result.data.clear();
 | |
|     }
 | |
| 
 | |
|     gguf_free(ctx_gguf);
 | |
|     ggml_free(ctx);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
 | |
|     common_control_vector_data result = { -1, {} };
 | |
| 
 | |
|     for (const auto & info : load_infos) {
 | |
|         auto cur = common_control_vector_load_one(info);
 | |
| 
 | |
|         if (cur.n_embd == -1) {
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
|         if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
 | |
|             LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
 | |
|             result.n_embd = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (result.n_embd == -1) {
 | |
|             result = std::move(cur);
 | |
|         } else {
 | |
|             result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
 | |
|             for (size_t i = 0; i < cur.data.size(); i++) {
 | |
|                 result.data[i] += cur.data[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result.n_embd == -1) {
 | |
|         LOG_ERR("%s: no valid control vector files passed\n", __func__);
 | |
|         result.data.clear();
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
 | |
|     const int64_t ne_datapoint = llama_n_ctx(ctx);
 | |
|     const int64_t ndata        = (tokens.size() - ne_datapoint - 1) / stride;
 | |
|     ggml_opt_dataset_t result = ggml_opt_dataset_init(
 | |
|         GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
 | |
| 
 | |
|     llama_token * data   = (llama_token *) ggml_opt_dataset_data(result)->data;
 | |
|     llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
 | |
| 
 | |
|     for (int64_t idata = 0; idata < ndata; ++idata) {
 | |
|         memcpy(data   + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
 | |
|         memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | 
