mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			9109 lines
		
	
	
		
			304 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			9109 lines
		
	
	
		
			304 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ops.h"
 | 
						|
 | 
						|
#include "ggml-cpu.h"
 | 
						|
#include "ggml-impl.h"
 | 
						|
#include "binary-ops.h"
 | 
						|
#include "unary-ops.h"
 | 
						|
#include "vec.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
 | 
						|
// ggml_compute_forward_dup
 | 
						|
 | 
						|
static void ggml_compute_forward_dup_same_cont(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | 
						|
    GGML_ASSERT(src0->type == dst->type);
 | 
						|
 | 
						|
    const size_t nb0 = ggml_type_size(src0->type);
 | 
						|
 | 
						|
    const int ith = params->ith; // thread index
 | 
						|
    const int nth = params->nth; // number of threads
 | 
						|
 | 
						|
    // parallelize by blocks
 | 
						|
    const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
 | 
						|
    const int dr = (nk + nth - 1) / nth;
 | 
						|
    const int k0 = dr * ith;
 | 
						|
    const int k1 = MIN(k0 + dr, nk);
 | 
						|
 | 
						|
    if (k0 < k1) {
 | 
						|
        memcpy(
 | 
						|
            ((char *)  dst->data + k0*nb0),
 | 
						|
            ((char *) src0->data + k0*nb0),
 | 
						|
            (k1 - k0) * nb0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_dup_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith; // thread index
 | 
						|
    const int nth = params->nth; // number of threads
 | 
						|
 | 
						|
    // parallelize by rows
 | 
						|
    const int nr = ne01;
 | 
						|
    // number of rows per thread
 | 
						|
    const int dr = (nr + nth - 1) / nth;
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr * ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    if (src0->type == dst->type &&
 | 
						|
        ne00 == ne0 &&
 | 
						|
        nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
 | 
						|
        // copy by rows
 | 
						|
        const size_t rs = ne00*nb00;
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    memcpy(
 | 
						|
                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | 
						|
                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | 
						|
                        rs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
 | 
						|
 | 
						|
    if (ggml_is_contiguous(dst)) {
 | 
						|
        if (nb00 == sizeof(ggml_fp16_t)) {
 | 
						|
            if (dst->type == GGML_TYPE_F16) {
 | 
						|
                size_t id = 0;
 | 
						|
                const size_t rs = ne00 * nb00;
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | 
						|
                            memcpy(dst_ptr + id, src0_ptr, rs);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
 | 
						|
                ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
 | 
						|
                float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
                size_t id = 0;
 | 
						|
                size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
 | 
						|
                            }
 | 
						|
 | 
						|
                            quantize_row_q(src0_f32, dst_ptr + id, ne00);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            //printf("%s: this is not optimal - fix me\n", __func__);
 | 
						|
 | 
						|
            if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = *src0_ptr;
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // dst counters
 | 
						|
    int64_t i10 = 0;
 | 
						|
    int64_t i11 = 0;
 | 
						|
    int64_t i12 = 0;
 | 
						|
    int64_t i13 = 0;
 | 
						|
 | 
						|
    if (dst->type == GGML_TYPE_F16) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
                        if (++i10 == ne00) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne01) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne02) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne03) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (dst->type == GGML_TYPE_F32) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_dup_bf16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith; // thread index
 | 
						|
    const int nth = params->nth; // number of threads
 | 
						|
 | 
						|
    // parallelize by rows
 | 
						|
    const int nr = ne01;
 | 
						|
    // number of rows per thread
 | 
						|
    const int dr = (nr + nth - 1) / nth;
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr * ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    if (src0->type == dst->type &&
 | 
						|
        ne00 == ne0 &&
 | 
						|
        nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
 | 
						|
        // copy by rows
 | 
						|
        const size_t rs = ne00*nb00;
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    memcpy(
 | 
						|
                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | 
						|
                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | 
						|
                        rs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
 | 
						|
 | 
						|
    if (ggml_is_contiguous(dst)) {
 | 
						|
        if (nb00 == sizeof(ggml_bf16_t)) {
 | 
						|
            if (dst->type == GGML_TYPE_BF16) {
 | 
						|
                size_t id = 0;
 | 
						|
                const size_t rs = ne00 * nb00;
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | 
						|
                            memcpy(dst_ptr + id, src0_ptr, rs);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
 | 
						|
                ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
 | 
						|
                float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
                size_t id = 0;
 | 
						|
                size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
 | 
						|
                            }
 | 
						|
 | 
						|
                            quantize_row_q(src0_f32, dst_ptr + id, ne00);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            //printf("%s: this is not optimal - fix me\n", __func__);
 | 
						|
 | 
						|
            if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_BF16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = *src0_ptr;
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // dst counters
 | 
						|
    int64_t i10 = 0;
 | 
						|
    int64_t i11 = 0;
 | 
						|
    int64_t i12 = 0;
 | 
						|
    int64_t i13 = 0;
 | 
						|
 | 
						|
    if (dst->type == GGML_TYPE_BF16) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
 | 
						|
 | 
						|
                        if (++i10 == ne00) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne01) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne02) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne03) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (dst->type == GGML_TYPE_F32) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_dup_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith; // thread index
 | 
						|
    const int nth = params->nth; // number of threads
 | 
						|
 | 
						|
    // parallelize by rows
 | 
						|
    const int nr = ne01;
 | 
						|
    // number of rows per thread
 | 
						|
    const int dr = (nr + nth - 1) / nth;
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr * ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    if (src0->type == dst->type &&
 | 
						|
        ne00 == ne0 &&
 | 
						|
        nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
 | 
						|
        // copy by rows
 | 
						|
        const size_t rs = ne00*nb00;
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    memcpy(
 | 
						|
                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | 
						|
                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | 
						|
                        rs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ggml_is_contiguous(dst)) {
 | 
						|
        // TODO: simplify
 | 
						|
        if (nb00 == sizeof(float)) {
 | 
						|
            if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                const size_t rs = ne00 * nb00;
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | 
						|
                            memcpy(dst_ptr + id, src0_ptr, rs);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
 | 
						|
                ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
 | 
						|
 | 
						|
                size_t id = 0;
 | 
						|
                size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
 | 
						|
                char * dst_ptr = (char *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += rs * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                            quantize_row_q(src0_ptr, dst_ptr + id, ne00);
 | 
						|
                            id += rs;
 | 
						|
                        }
 | 
						|
                        id += rs * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            //printf("%s: this is not optimal - fix me\n", __func__);
 | 
						|
 | 
						|
            if (dst->type == GGML_TYPE_F32) {
 | 
						|
                size_t id = 0;
 | 
						|
                float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = *src0_ptr;
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else if (dst->type == GGML_TYPE_BF16) {
 | 
						|
                size_t id = 0;
 | 
						|
                ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
 | 
						|
 | 
						|
                for (int i03 = 0; i03 < ne03; i03++) {
 | 
						|
                    for (int i02 = 0; i02 < ne02; i02++) {
 | 
						|
                        id += ne00 * ir0;
 | 
						|
                        for (int i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                                const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                                dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
 | 
						|
                                id++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        id += ne00 * (ne01 - ir1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // dst counters
 | 
						|
 | 
						|
    int64_t i10 = 0;
 | 
						|
    int64_t i11 = 0;
 | 
						|
    int64_t i12 = 0;
 | 
						|
    int64_t i13 = 0;
 | 
						|
 | 
						|
    if (dst->type == GGML_TYPE_F32) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        memcpy(dst_ptr, src0_ptr, sizeof(float));
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (dst->type == GGML_TYPE_F16) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (dst->type == GGML_TYPE_BF16) {
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                i10 += ne00 * ir0;
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                        *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
 | 
						|
 | 
						|
                        if (++i10 == ne0) {
 | 
						|
                            i10 = 0;
 | 
						|
                            if (++i11 == ne1) {
 | 
						|
                                i11 = 0;
 | 
						|
                                if (++i12 == ne2) {
 | 
						|
                                    i12 = 0;
 | 
						|
                                    if (++i13 == ne3) {
 | 
						|
                                        i13 = 0;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i10 += ne00 * (ne01 - ir1);
 | 
						|
                while (i10 >= ne0) {
 | 
						|
                    i10 -= ne0;
 | 
						|
                    if (++i11 == ne1) {
 | 
						|
                        i11 = 0;
 | 
						|
                        if (++i12 == ne2) {
 | 
						|
                            i12 = 0;
 | 
						|
                            if (++i13 == ne3) {
 | 
						|
                                i13 = 0;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("fatal error"); // TODO: implement
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
 | 
						|
static void ggml_compute_forward_dup_bytes(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
    GGML_ASSERT(src0->type == dst->type);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS;
 | 
						|
 | 
						|
    if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
 | 
						|
        ggml_compute_forward_dup_same_cont(params, dst);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const size_t type_size = ggml_type_size(src0->type);
 | 
						|
 | 
						|
    const int ith = params->ith; // thread index
 | 
						|
    const int nth = params->nth; // number of threads
 | 
						|
 | 
						|
    // parallelize by rows
 | 
						|
    const int nr = ne01;
 | 
						|
    // number of rows per thread
 | 
						|
    const int dr = (nr + nth - 1) / nth;
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr * ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    if (src0->type == dst->type &&
 | 
						|
        ggml_are_same_shape(src0, dst) &&
 | 
						|
        nb00 == type_size && nb0 == type_size) {
 | 
						|
        // copy by rows
 | 
						|
        const size_t rs = ggml_row_size(src0->type, ne00);
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                    memcpy(
 | 
						|
                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | 
						|
                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | 
						|
                        rs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ggml_is_contiguous(dst)) {
 | 
						|
        size_t id = 0;
 | 
						|
        char * dst_ptr = (char *) dst->data;
 | 
						|
        const size_t rs = ne00 * type_size;
 | 
						|
 | 
						|
        if (nb00 == type_size) {
 | 
						|
            // src0 is contigous on first dimension, copy by rows
 | 
						|
            for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
                for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                    id += rs * ir0;
 | 
						|
                    for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                        const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | 
						|
                        memcpy(dst_ptr + id, src0_ptr, rs);
 | 
						|
                        id += rs;
 | 
						|
                    }
 | 
						|
                    id += rs * (ne01 - ir1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            //printf("%s: this is not optimal - fix me\n", __func__);
 | 
						|
 | 
						|
            for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
                for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                    id += rs * ir0;
 | 
						|
                    for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                        for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                            const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
 | 
						|
                            memcpy(dst_ptr + id, src0_ptr, type_size);
 | 
						|
 | 
						|
                            id += type_size;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    id += rs * (ne01 - ir1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // dst counters
 | 
						|
    int64_t k10 = 0;
 | 
						|
    int64_t i11 = 0;
 | 
						|
    int64_t i12 = 0;
 | 
						|
    int64_t i13 = 0;
 | 
						|
 | 
						|
    // number of blocks in a row
 | 
						|
    const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
 | 
						|
    const int64_t nk0  = ne0  / ggml_blck_size(dst->type);
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            k10 += nk00 * ir0;
 | 
						|
            while (k10 >= nk0) {
 | 
						|
                k10 -= nk0;
 | 
						|
                if (++i11 == ne1) {
 | 
						|
                    i11 = 0;
 | 
						|
                    if (++i12 == ne2) {
 | 
						|
                        i12 = 0;
 | 
						|
                        if (++i13 == ne3) {
 | 
						|
                            i13 = 0;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | 
						|
                for (int64_t k00 = 0; k00 < nk00; k00++) {
 | 
						|
                    const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                          char * dst_ptr  = ((char *)  dst->data + k10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | 
						|
 | 
						|
                    memcpy(dst_ptr, src0_ptr, type_size);
 | 
						|
 | 
						|
                    if (++k10 == nk0) {
 | 
						|
                        k10 = 0;
 | 
						|
                        if (++i11 == ne1) {
 | 
						|
                            i11 = 0;
 | 
						|
                            if (++i12 == ne2) {
 | 
						|
                                i12 = 0;
 | 
						|
                                if (++i13 == ne3) {
 | 
						|
                                    i13 = 0;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            k10 += nk00 * (ne01 - ir1);
 | 
						|
            while (k10 >= nk0) {
 | 
						|
                k10 -= nk0;
 | 
						|
                if (++i11 == ne1) {
 | 
						|
                    i11 = 0;
 | 
						|
                    if (++i12 == ne2) {
 | 
						|
                        i12 = 0;
 | 
						|
                        if (++i13 == ne3) {
 | 
						|
                            i13 = 0;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_dup_q(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
    ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
 | 
						|
 | 
						|
    size_t qk = ggml_blck_size(type);
 | 
						|
    const int64_t nr = ggml_nelements(src1) / qk;
 | 
						|
 | 
						|
    // destination must be contiguous in the first dimension
 | 
						|
    GGML_ASSERT(nb10 == ggml_type_size(dst->type));
 | 
						|
    // must either have first dimension large enough to hold a row, or fully contiguous
 | 
						|
    GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t ir = ir0; ir < ir1; ++ir) {
 | 
						|
 | 
						|
        uint32_t i = ir * qk;
 | 
						|
 | 
						|
        const int64_t i03 = i/(ne00 * ne01 * ne02);
 | 
						|
        const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
 | 
						|
        const int64_t i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
 | 
						|
        const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
 | 
						|
        const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
 | 
						|
 | 
						|
        const int64_t i13 = i/(ne10 * ne11 * ne12);
 | 
						|
        const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
 | 
						|
        const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
 | 
						|
        const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
 | 
						|
        const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
 | 
						|
 | 
						|
        dequantize_row_q(
 | 
						|
                (const void *) ((char *) src0->data + x_offset),
 | 
						|
                     (float *) ((char *)  dst->data + dst_offset), qk);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_dup(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (src0->type == dst->type) {
 | 
						|
        ggml_compute_forward_dup_bytes(params, dst);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_dup_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_dup_bf16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_dup_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
 | 
						|
                    ggml_compute_forward_dup_q(params, dst);
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_add
 | 
						|
 | 
						|
static void ggml_compute_forward_add_q_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
    const ggml_type dtype = dst->type;
 | 
						|
    ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
 | 
						|
    ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
 | 
						|
 | 
						|
    // we don't support permuted src0 or src1
 | 
						|
    GGML_ASSERT(nb00 == ggml_type_size(type));
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    // dst cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 <= nb1);
 | 
						|
    GGML_ASSERT(nb1 <= nb2);
 | 
						|
    GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_quantized(src0->type));
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 indices
 | 
						|
        const int i03 = ir/(ne02*ne01);
 | 
						|
        const int i02 = (ir - i03*ne02*ne01)/ne01;
 | 
						|
        const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | 
						|
 | 
						|
        // src1 and dst are same shape as src0 => same indices
 | 
						|
        const int i13 = i03;
 | 
						|
        const int i12 = i02;
 | 
						|
        const int i11 = i01;
 | 
						|
 | 
						|
        const int i3 = i03;
 | 
						|
        const int i2 = i02;
 | 
						|
        const int i1 = i01;
 | 
						|
 | 
						|
        void  * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
        float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
 | 
						|
        void  * dst_row  = (void *) ((char *)  dst->data + ( i1*nb1  +  i2*nb2  +  i3*nb3));
 | 
						|
 | 
						|
        assert(ne00 % 32 == 0);
 | 
						|
 | 
						|
        // unquantize row from src0 to temp buffer
 | 
						|
        dequantize_row_q(src0_row, wdata, ne00);
 | 
						|
        // add src1
 | 
						|
        ggml_vec_acc_f32(ne00, wdata, src1_row);
 | 
						|
        // quantize row to dst
 | 
						|
        if (quantize_row_q != NULL) {
 | 
						|
            quantize_row_q(wdata, dst_row, ne00);
 | 
						|
        } else {
 | 
						|
            memcpy(dst_row, wdata, ne0*nb0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_add(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_add_non_quantized(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_add_q_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_add1
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
#ifdef GGML_USE_ACCELERATE
 | 
						|
        GGML_UNUSED(ggml_vec_add1_f32);
 | 
						|
 | 
						|
        vDSP_vadd(
 | 
						|
                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
 | 
						|
                (float *) ((char *) src1->data), 0,
 | 
						|
                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
 | 
						|
                ne0);
 | 
						|
#else
 | 
						|
        ggml_vec_add1_f32(ne0,
 | 
						|
                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
 | 
						|
                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
 | 
						|
               *(float *) src1->data);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_f16_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    // scalar to add
 | 
						|
    const float v = *(float *) src1->data;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | 
						|
        ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | 
						|
        for (int i = 0; i < ne0; i++) {
 | 
						|
            dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_f16_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    // scalar to add
 | 
						|
    const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | 
						|
        ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | 
						|
        for (int i = 0; i < ne0; i++) {
 | 
						|
            dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_q_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    // scalar to add
 | 
						|
    const float v = *(float *) src1->data;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
    ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
 | 
						|
    ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
 | 
						|
 | 
						|
    // we don't support permuted src0
 | 
						|
    GGML_ASSERT(nb00 == ggml_type_size(type));
 | 
						|
 | 
						|
    // dst cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 <= nb1);
 | 
						|
    GGML_ASSERT(nb1 <= nb2);
 | 
						|
    GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_quantized(src0->type));
 | 
						|
    GGML_ASSERT(dst->type == src0->type);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        void  * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
 | 
						|
        void  * dst_row  = (void *) ((char *)  dst->data + (i1*nb1  + i2*nb2  + i3*nb0 ));
 | 
						|
 | 
						|
        assert(ne0 % 32 == 0);
 | 
						|
 | 
						|
        // unquantize row from src0 to temp buffer
 | 
						|
        dequantize_row_q(src0_row, wdata, ne0);
 | 
						|
        // add src1
 | 
						|
        ggml_vec_acc1_f32(ne0, wdata, v);
 | 
						|
        // quantize row to dst
 | 
						|
        quantize_row_q(wdata, dst_row, ne0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_bf16_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    // scalar to add
 | 
						|
    const float v = *(float *) src1->data;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_BF16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(dst->type  == GGML_TYPE_BF16);
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        ggml_bf16_t * dst_ptr  = (ggml_bf16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | 
						|
        ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | 
						|
        for (int i = 0; i < ne0; i++) {
 | 
						|
            dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_add1_bf16_bf16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(src1));
 | 
						|
 | 
						|
    // scalar to add
 | 
						|
    const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_BF16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_BF16);
 | 
						|
    GGML_ASSERT(dst->type  == GGML_TYPE_BF16);
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are same shape => same indices
 | 
						|
        const int i3 = ir/(ne2*ne1);
 | 
						|
        const int i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        ggml_bf16_t * dst_ptr  = (ggml_bf16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | 
						|
        ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | 
						|
        for (int i = 0; i < ne0; i++) {
 | 
						|
            dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_add1(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_add1_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                if (src1->type == GGML_TYPE_F16) {
 | 
						|
                    ggml_compute_forward_add1_f16_f16(params, dst);
 | 
						|
                }
 | 
						|
                else if (src1->type == GGML_TYPE_F32) {
 | 
						|
                    ggml_compute_forward_add1_f16_f32(params, dst);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    GGML_ABORT("fatal error");
 | 
						|
                }
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                if (src1->type == GGML_TYPE_BF16) {
 | 
						|
                    ggml_compute_forward_add1_bf16_bf16(params, dst);
 | 
						|
                }
 | 
						|
                else if (src1->type == GGML_TYPE_F32) {
 | 
						|
                    ggml_compute_forward_add1_bf16_f32(params, dst);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    GGML_ABORT("fatal error");
 | 
						|
                }
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q8_1:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_add1_q_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_acc
 | 
						|
 | 
						|
static void ggml_compute_forward_acc_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | 
						|
 | 
						|
    // view src0 and dst with these strides and data offset inbytes during acc
 | 
						|
    // nb0 is implicitly element_size because src0 and dst are contiguous
 | 
						|
    size_t nb1     = ((int32_t *) dst->op_params)[0];
 | 
						|
    size_t nb2     = ((int32_t *) dst->op_params)[1];
 | 
						|
    size_t nb3     = ((int32_t *) dst->op_params)[2];
 | 
						|
    size_t offset  = ((int32_t *) dst->op_params)[3];
 | 
						|
    bool   inplace = (bool) ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
    if (!inplace) {
 | 
						|
        if (params->ith == 0) {
 | 
						|
            // memcpy needs to be synchronized across threads to avoid race conditions.
 | 
						|
            // => do it in INIT phase
 | 
						|
            memcpy(
 | 
						|
                ((char *)  dst->data),
 | 
						|
                ((char *) src0->data),
 | 
						|
                ggml_nbytes(dst));
 | 
						|
        }
 | 
						|
        ggml_barrier(params->threadpool);
 | 
						|
    }
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr = ggml_nrows(src1);
 | 
						|
    const int nc = src1->ne[0];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb)
 | 
						|
 | 
						|
    // src0 and dst as viewed during acc
 | 
						|
    const size_t nb0 = ggml_element_size(src0);
 | 
						|
 | 
						|
    const size_t nb00 = nb0;
 | 
						|
    const size_t nb01 = nb1;
 | 
						|
    const size_t nb02 = nb2;
 | 
						|
    const size_t nb03 = nb3;
 | 
						|
 | 
						|
    GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0  + (ne11 == 0 ? 0 : ne11-1)*nb1  + (ne12 == 0 ? 0 : ne12-1)*nb2  + (ne13 == 0 ? 0 : ne13-1)*nb3  < ggml_nbytes(dst));
 | 
						|
    GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
 | 
						|
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are viewed with shape of src1 and offset
 | 
						|
        // => same indices
 | 
						|
        const int i3 = ir/(ne12*ne11);
 | 
						|
        const int i2 = (ir - i3*ne12*ne11)/ne11;
 | 
						|
        const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
 | 
						|
 | 
						|
#ifdef GGML_USE_ACCELERATE
 | 
						|
        vDSP_vadd(
 | 
						|
                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
 | 
						|
                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
 | 
						|
                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1  + offset), 1, nc);
 | 
						|
#else
 | 
						|
        ggml_vec_add_f32(nc,
 | 
						|
                (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
 | 
						|
                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
 | 
						|
                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_acc(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_acc_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q8_1:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_sum
 | 
						|
 | 
						|
static void ggml_compute_forward_sum_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_is_scalar(dst));
 | 
						|
    assert(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb)
 | 
						|
 | 
						|
    ggml_float sum     = 0;
 | 
						|
    ggml_float row_sum = 0;
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                ggml_vec_sum_f32_ggf(ne00,
 | 
						|
                        &row_sum,
 | 
						|
                        (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
                sum += row_sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ((float *) dst->data)[0] = sum;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_sum_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
          ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_is_scalar(dst));
 | 
						|
 | 
						|
    assert(src0->nb[0] == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb)
 | 
						|
 | 
						|
    float sum = 0;
 | 
						|
    float row_sum = 0;
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                ggml_vec_sum_f16_ggf(ne00,
 | 
						|
                    &row_sum,
 | 
						|
                    (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
 | 
						|
                sum += row_sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_sum_bf16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
          ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_is_scalar(dst));
 | 
						|
 | 
						|
    assert(src0->nb[0] == sizeof(ggml_bf16_t));
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb)
 | 
						|
 | 
						|
    float sum = 0;
 | 
						|
    float row_sum = 0;
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                ggml_vec_sum_bf16_ggf(ne00,
 | 
						|
                    &row_sum,
 | 
						|
                    (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
 | 
						|
                sum += row_sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_sum(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sum_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sum_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sum_bf16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_sum_rows
 | 
						|
 | 
						|
static void ggml_compute_forward_sum_rows_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(dst->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(ne0 == 1);
 | 
						|
    GGML_ASSERT(ne1 == ne01);
 | 
						|
    GGML_ASSERT(ne2 == ne02);
 | 
						|
    GGML_ASSERT(ne3 == ne03);
 | 
						|
 | 
						|
    for (int64_t i3 = 0; i3 < ne03; i3++) {
 | 
						|
        for (int64_t i2 = 0; i2 < ne02; i2++) {
 | 
						|
            for (int64_t i1 = 0; i1 < ne01; i1++) {
 | 
						|
                float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
 | 
						|
                float * dst_row = (float *) ((char *) dst->data  + i1*nb1  + i2*nb2  + i3*nb3);
 | 
						|
                float row_sum = 0;
 | 
						|
                ggml_vec_sum_f32(ne00, &row_sum, src_row);
 | 
						|
                dst_row[0] = row_sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_sum_rows(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sum_rows_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_mean
 | 
						|
 | 
						|
static void ggml_compute_forward_mean_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    assert(ne0 == 1);
 | 
						|
    assert(ne1 == ne01);
 | 
						|
    assert(ne2 == ne02);
 | 
						|
    assert(ne3 == ne03);
 | 
						|
 | 
						|
    GGML_UNUSED(ne0);
 | 
						|
    GGML_UNUSED(ne1);
 | 
						|
    GGML_UNUSED(ne2);
 | 
						|
    GGML_UNUSED(ne3);
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                ggml_vec_sum_f32(ne00,
 | 
						|
                        (float *) ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | 
						|
                        (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
 | 
						|
                *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_mean(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_mean_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_argmax
 | 
						|
 | 
						|
static void ggml_compute_forward_argmax_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(src0->nb[0] == sizeof(float));
 | 
						|
    assert(dst->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
 | 
						|
    const size_t nb01 = src0->nb[1];
 | 
						|
    const size_t nb0 = dst->nb[0];
 | 
						|
 | 
						|
    for (int64_t i1 = 0; i1 < ne01; i1++) {
 | 
						|
        float * src = (float *) ((char *) src0->data + i1*nb01);
 | 
						|
        int32_t * dst_ = (int32_t *) ((char *)  dst->data + i1*nb0);
 | 
						|
        int v = 0;
 | 
						|
        ggml_vec_argmax_f32(ne00, &v, src);
 | 
						|
        dst_[0] = v;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_argmax(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_argmax_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_count_equal
 | 
						|
 | 
						|
static void ggml_compute_forward_count_equal_i32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS;
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_I32);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src1));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(dst));
 | 
						|
    GGML_ASSERT(dst->type == GGML_TYPE_I64);
 | 
						|
 | 
						|
    const int64_t nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    int64_t * sums = (int64_t *) params->wdata;
 | 
						|
    int64_t sum_thread = 0;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int64_t dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int64_t ir0 = dr*ith;
 | 
						|
    const int64_t ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t ir = ir0; ir < ir1; ++ir) {
 | 
						|
        const int64_t i03 =  ir                        / (ne02*ne01);
 | 
						|
        const int64_t i02 = (ir - i03*ne03)            /       ne01;
 | 
						|
        const int64_t i01 =  ir - i03*ne03 - i02*ne02;
 | 
						|
 | 
						|
        const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
 | 
						|
        const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
 | 
						|
 | 
						|
        for (int64_t i00 = 0; i00 < ne00; ++i00) {
 | 
						|
            const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
 | 
						|
            const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
 | 
						|
 | 
						|
            sum_thread += val0 == val1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ith != 0) {
 | 
						|
        sums[ith] = sum_thread;
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    if (ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int ith_other = 1; ith_other < nth; ++ith_other) {
 | 
						|
        sum_thread += sums[ith_other];
 | 
						|
    }
 | 
						|
    *((int64_t *) dst->data) = sum_thread;
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_count_equal(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_count_equal_i32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_repeat
 | 
						|
 | 
						|
static void ggml_compute_forward_repeat_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_can_repeat(src0, dst));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    // guaranteed to be an integer due to the check in ggml_can_repeat
 | 
						|
    const int nr0 = (int)(ne0/ne00);
 | 
						|
    const int nr1 = (int)(ne1/ne01);
 | 
						|
    const int nr2 = (int)(ne2/ne02);
 | 
						|
    const int nr3 = (int)(ne3/ne03);
 | 
						|
 | 
						|
    // TODO: support for transposed / permuted tensors
 | 
						|
    GGML_ASSERT(nb0  == sizeof(float));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    // TODO: maybe this is not optimal?
 | 
						|
    for                         (int i3 = 0; i3 < nr3;  i3++) {
 | 
						|
        for                     (int k3 = 0; k3 < ne03; k3++) {
 | 
						|
            for                 (int i2 = 0; i2 < nr2;  i2++) {
 | 
						|
                for             (int k2 = 0; k2 < ne02; k2++) {
 | 
						|
                    for         (int i1 = 0; i1 < nr1;  i1++) {
 | 
						|
                        for     (int k1 = 0; k1 < ne01; k1++) {
 | 
						|
                            for (int i0 = 0; i0 < nr0;  i0++) {
 | 
						|
                                ggml_vec_cpy_f32(ne00,
 | 
						|
                                        (float *) ((char *)  dst->data + (i3*ne03 + k3)*nb3  + (i2*ne02 + k2)*nb2  + (i1*ne01 + k1)*nb1  + (i0*ne00)*nb0),
 | 
						|
                                        (float *) ((char *) src0->data + (          k3)*nb03 + (          k2)*nb02 + (          k1)*nb01));
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_repeat_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_can_repeat(src0, dst));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    // guaranteed to be an integer due to the check in ggml_can_repeat
 | 
						|
    const int nr0 = (int)(ne0/ne00);
 | 
						|
    const int nr1 = (int)(ne1/ne01);
 | 
						|
    const int nr2 = (int)(ne2/ne02);
 | 
						|
    const int nr3 = (int)(ne3/ne03);
 | 
						|
 | 
						|
    // TODO: support for transposed / permuted tensors
 | 
						|
    GGML_ASSERT(nb0  == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    // TODO: maybe this is not optimal?
 | 
						|
    for                         (int i3 = 0; i3 < nr3;  i3++) {
 | 
						|
        for                     (int k3 = 0; k3 < ne03; k3++) {
 | 
						|
            for                 (int i2 = 0; i2 < nr2;  i2++) {
 | 
						|
                for             (int k2 = 0; k2 < ne02; k2++) {
 | 
						|
                    for         (int i1 = 0; i1 < nr1;  i1++) {
 | 
						|
                        for     (int k1 = 0; k1 < ne01; k1++) {
 | 
						|
                            for (int i0 = 0; i0 < nr0;  i0++) {
 | 
						|
                                ggml_fp16_t * y = (ggml_fp16_t *) ((char *)  dst->data + (i3*ne03 + k3)*nb3  + (i2*ne02 + k2)*nb2  + (i1*ne01 + k1)*nb1  + (i0*ne00)*nb0);
 | 
						|
                                ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + (          k3)*nb03 + (          k2)*nb02 + (          k1)*nb01);
 | 
						|
                                // ggml_vec_cpy_f16(ne00, y, x)
 | 
						|
                                for (int i = 0; i < ne00; ++i) {
 | 
						|
                                    y[i]  = x[i];
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_repeat(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
        case GGML_TYPE_I16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_repeat_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_repeat_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_repeat_back
 | 
						|
 | 
						|
static void ggml_compute_forward_repeat_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_can_repeat(dst, src0));
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    // guaranteed to be an integer due to the check in ggml_can_repeat
 | 
						|
    const int nr0 = (int)(ne00/ne0);
 | 
						|
    const int nr1 = (int)(ne01/ne1);
 | 
						|
    const int nr2 = (int)(ne02/ne2);
 | 
						|
    const int nr3 = (int)(ne03/ne3);
 | 
						|
 | 
						|
    // TODO: support for transposed / permuted tensors
 | 
						|
    GGML_ASSERT(nb0  == sizeof(float));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    if (ggml_is_contiguous(dst)) {
 | 
						|
        ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
 | 
						|
    } else {
 | 
						|
        for         (int k3 = 0; k3 < ne3; k3++) {
 | 
						|
            for     (int k2 = 0; k2 < ne2; k2++) {
 | 
						|
                for (int k1 = 0; k1 < ne1; k1++) {
 | 
						|
                    ggml_vec_set_f32(ne0,
 | 
						|
                        (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
 | 
						|
                        0);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: maybe this is not optimal?
 | 
						|
    for                         (int i3 = 0; i3 < nr3; i3++) {
 | 
						|
        for                     (int k3 = 0; k3 < ne3; k3++) {
 | 
						|
            for                 (int i2 = 0; i2 < nr2; i2++) {
 | 
						|
                for             (int k2 = 0; k2 < ne2; k2++) {
 | 
						|
                    for         (int i1 = 0; i1 < nr1; i1++) {
 | 
						|
                        for     (int k1 = 0; k1 < ne1; k1++) {
 | 
						|
                            for (int i0 = 0; i0 < nr0; i0++) {
 | 
						|
                                ggml_vec_acc_f32(ne0,
 | 
						|
                                        (float *) ((char *)  dst->data + (         k3)*nb3  + (         k2)*nb2  + (         k1)*nb1),
 | 
						|
                                        (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_repeat_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_repeat_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_concat
 | 
						|
 | 
						|
static void ggml_compute_forward_concat_any(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    const size_t len = ggml_type_size(src0->type);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int32_t dim = ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    GGML_ASSERT(dim >= 0 && dim < 4);
 | 
						|
 | 
						|
    int64_t o[4] = {0, 0, 0, 0};
 | 
						|
    o[dim] = src0->ne[dim];
 | 
						|
 | 
						|
    const char * x;
 | 
						|
 | 
						|
    // TODO: smarter multi-theading
 | 
						|
    for (int i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
            for (int i1 = 0; i1 < ne1; i1++) {
 | 
						|
                for (int i0 = 0; i0 < ne0; i0++) {
 | 
						|
                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | 
						|
                        x = (const char *)src0->data + (i0       )*nb00 + (i1       )*nb01 + (i2       )*nb02 + (i3       )*nb03;
 | 
						|
                    } else {
 | 
						|
                        x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
 | 
						|
                    }
 | 
						|
 | 
						|
                    char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
 | 
						|
 | 
						|
                    memcpy(y, x, len);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_concat_i8(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int32_t dim = ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    GGML_ASSERT(dim >= 0 && dim < 4);
 | 
						|
 | 
						|
    int64_t o[4] = {0, 0, 0, 0};
 | 
						|
    o[dim] = src0->ne[dim];
 | 
						|
 | 
						|
    const int8_t * x;
 | 
						|
 | 
						|
    // TODO: smarter multi-theading
 | 
						|
    for (int i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
            for (int i1 = 0; i1 < ne1; i1++) {
 | 
						|
                for (int i0 = 0; i0 < ne0; i0++) {
 | 
						|
                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | 
						|
                        x = (const int8_t *) ((const char *)src0->data + (i0       )*nb00 + (i1       )*nb01 + (i2       )*nb02 + (i3       )*nb03);
 | 
						|
                    } else {
 | 
						|
                        x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
 | 
						|
                    }
 | 
						|
 | 
						|
                    int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
 | 
						|
 | 
						|
                    *y = *x;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_concat_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int32_t dim = ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    GGML_ASSERT(dim >= 0 && dim < 4);
 | 
						|
 | 
						|
    int64_t o[4] = {0, 0, 0, 0};
 | 
						|
    o[dim] = src0->ne[dim];
 | 
						|
 | 
						|
    const ggml_fp16_t * x;
 | 
						|
 | 
						|
    // TODO: smarter multi-theading
 | 
						|
    for (int i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
            for (int i1 = 0; i1 < ne1; i1++) {
 | 
						|
                for (int i0 = 0; i0 < ne0; i0++) {
 | 
						|
                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | 
						|
                        x = (const ggml_fp16_t *) ((const char *)src0->data + (i0       )*nb00 + (i1       )*nb01 + (i2       )*nb02 + (i3       )*nb03);
 | 
						|
                    } else {
 | 
						|
                        x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
 | 
						|
                    }
 | 
						|
 | 
						|
                    ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
 | 
						|
 | 
						|
                    *y = *x;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_concat_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int32_t dim = ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    GGML_ASSERT(dim >= 0 && dim < 4);
 | 
						|
 | 
						|
    int64_t o[4] = {0, 0, 0, 0};
 | 
						|
    o[dim] = src0->ne[dim];
 | 
						|
 | 
						|
    const float * x;
 | 
						|
 | 
						|
    // TODO: smarter multi-theading
 | 
						|
    for (int i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
            for (int i1 = 0; i1 < ne1; i1++) {
 | 
						|
                for (int i0 = 0; i0 < ne0; i0++) {
 | 
						|
                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | 
						|
                        x = (const float *) ((const char *)src0->data + (i0       )*nb00 + (i1       )*nb01 + (i2       )*nb02 + (i3       )*nb03);
 | 
						|
                    } else {
 | 
						|
                        x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
 | 
						|
                    }
 | 
						|
 | 
						|
                    float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
 | 
						|
 | 
						|
                    *y = *x;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_concat(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
        case GGML_TYPE_I16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_concat_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_I8:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_concat_i8(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_concat_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_concat_any(params, dst);
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_gelu
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            GGML_UNUSED(x);
 | 
						|
            assert(!isnan(x));
 | 
						|
            assert(!isinf(x));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            const float v = GGML_FP16_TO_FP32(x);
 | 
						|
            GGML_UNUSED(v);
 | 
						|
            assert(!isnan(v));
 | 
						|
            assert(!isinf(v));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_gelu_erf
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_erf_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_erf_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            GGML_UNUSED(x);
 | 
						|
            assert(!isnan(x));
 | 
						|
            assert(!isinf(x));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_erf_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_erf_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            const float v = GGML_FP16_TO_FP32(x);
 | 
						|
            GGML_UNUSED(v);
 | 
						|
            assert(!isnan(v));
 | 
						|
            assert(!isinf(v));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_erf(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_erf_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_erf_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_gelu_quick
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_quick_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_quick_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            GGML_UNUSED(x);
 | 
						|
            assert(!isnan(x));
 | 
						|
            assert(!isinf(x));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_quick_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_gelu_quick_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            const float v = GGML_FP16_TO_FP32(x);
 | 
						|
            GGML_UNUSED(v);
 | 
						|
            assert(!isnan(v));
 | 
						|
            assert(!isinf(v));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_gelu_quick(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_quick_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_quick_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_silu
 | 
						|
 | 
						|
static void ggml_compute_forward_silu_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_silu_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
 | 
						|
            GGML_UNUSED(x);
 | 
						|
            assert(!isnan(x));
 | 
						|
            assert(!isinf(x));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_silu_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_silu_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
 | 
						|
            const float v = GGML_FP16_TO_FP32(x);
 | 
						|
            GGML_UNUSED(v);
 | 
						|
            assert(!isnan(v));
 | 
						|
            assert(!isinf(v));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_silu(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_silu_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_silu_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
// ggml_compute_forward_leaky_relu
 | 
						|
 | 
						|
static void ggml_compute_forward_leaky_relu_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int n  = ggml_nrows(src0);
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
 | 
						|
    float negative_slope;
 | 
						|
    memcpy(&negative_slope, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    assert(dst->nb[0]  == sizeof(float));
 | 
						|
    assert(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        ggml_vec_leaky_relu_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_leaky_relu_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(src0));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    const int n  = ggml_nrows(src0);
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
 | 
						|
    float negative_slope;
 | 
						|
    memcpy(&negative_slope, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    assert(dst->nb[0]  == sizeof(ggml_fp16_t));
 | 
						|
    assert(src0->nb[0] == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        ggml_vec_leaky_relu_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_leaky_relu(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_leaky_relu_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_leaky_relu_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_silu_back
 | 
						|
 | 
						|
static void ggml_compute_forward_silu_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * grad = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(grad));
 | 
						|
    assert(ggml_is_contiguous_1(src1));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src1, dst));
 | 
						|
    assert(ggml_are_same_shape(src1, grad));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src1->ne[0];
 | 
						|
    const int nr = ggml_nrows(src1);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_silu_backward_f32(nc,
 | 
						|
                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (float *) ((char *) src1->data + i1*(src1->nb[1])),
 | 
						|
                (float *) ((char *) grad->data + i1*(grad->nb[1])));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            GGML_UNUSED(x);
 | 
						|
            assert(!isnan(x));
 | 
						|
            assert(!isinf(x));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_silu_back_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * grad = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous_1(grad));
 | 
						|
    assert(ggml_is_contiguous_1(src1));
 | 
						|
    assert(ggml_is_contiguous_1(dst));
 | 
						|
    assert(ggml_are_same_shape(src1, dst));
 | 
						|
    assert(ggml_are_same_shape(src1, grad));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src1->ne[0];
 | 
						|
    const int nr = ggml_nrows(src1);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        ggml_vec_silu_backward_f16(nc,
 | 
						|
                (ggml_fp16_t *) ((char *) dst->data  + i1*( dst->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
 | 
						|
                (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
 | 
						|
 | 
						|
    #ifndef NDEBUG
 | 
						|
        for (int k = 0; k < nc; k++) {
 | 
						|
            const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | 
						|
            const float v = GGML_FP16_TO_FP32(x);
 | 
						|
            GGML_UNUSED(v);
 | 
						|
            assert(!isnan(v));
 | 
						|
            assert(!isinf(v));
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_silu_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_silu_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_silu_back_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_norm
 | 
						|
 | 
						|
static void ggml_compute_forward_norm_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    float eps;
 | 
						|
    memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    GGML_ASSERT(eps >= 0.0f);
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | 
						|
                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                ggml_float sum = 0.0;
 | 
						|
                for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                    sum += (ggml_float)x[i00];
 | 
						|
                }
 | 
						|
 | 
						|
                float mean = sum/ne00;
 | 
						|
 | 
						|
                float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | 
						|
 | 
						|
                ggml_float sum2 = 0.0;
 | 
						|
                for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                    float v = x[i00] - mean;
 | 
						|
                    y[i00] = v;
 | 
						|
                    sum2 += (ggml_float)(v*v);
 | 
						|
                }
 | 
						|
 | 
						|
                float variance = sum2/ne00;
 | 
						|
                const float scale = 1.0f/sqrtf(variance + eps);
 | 
						|
 | 
						|
                ggml_vec_scale_f32(ne00, y, scale);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_norm(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_norm_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_group_rms_norm
 | 
						|
 | 
						|
static void ggml_compute_forward_rms_norm_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    float eps;
 | 
						|
    memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    GGML_ASSERT(eps >= 0.0f);
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | 
						|
                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                ggml_float sum = 0.0;
 | 
						|
                for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                    sum += (ggml_float)(x[i00] * x[i00]);
 | 
						|
                }
 | 
						|
 | 
						|
                const float mean = sum/ne00;
 | 
						|
 | 
						|
                float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | 
						|
 | 
						|
                memcpy(y, x, ne00 * sizeof(float));
 | 
						|
                // for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                //     y[i00] = x[i00];
 | 
						|
                // }
 | 
						|
 | 
						|
                const float scale = 1.0f/sqrtf(mean + eps);
 | 
						|
 | 
						|
                ggml_vec_scale_f32(ne00, y, scale);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_rms_norm(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rms_norm_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_rms_norm_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
 | 
						|
    const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src1->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    float eps;
 | 
						|
    memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | 
						|
                // src1 is same shape as src0 => same indices
 | 
						|
                const int64_t i11 = i01;
 | 
						|
                const int64_t i12 = i02;
 | 
						|
                const int64_t i13 = i03;
 | 
						|
 | 
						|
                const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                const float * x  = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
 | 
						|
 | 
						|
                ggml_float sum_xx  = 0.0;
 | 
						|
                ggml_float sum_xdz = 0.0;
 | 
						|
 | 
						|
                for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                    sum_xx  += (ggml_float)(x[i00] * x[i00]);
 | 
						|
                    sum_xdz += (ggml_float)(x[i00] * dz[i00]);
 | 
						|
                }
 | 
						|
 | 
						|
                //const float mean     = (float)(sum_xx)/ne00;
 | 
						|
                const float mean_eps = (float)(sum_xx)/ne00 + eps;
 | 
						|
                const float sum_eps  = (float)(sum_xx) + eps*ne00;
 | 
						|
                //const float mean_xdz = (float)(sum_xdz)/ne00;
 | 
						|
                // we could cache rms from forward pass to improve performance.
 | 
						|
                // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
 | 
						|
                //const float rms      = sqrtf(mean_eps);
 | 
						|
                const float rrms     = 1.0f / sqrtf(mean_eps);
 | 
						|
                //const float scale    = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
 | 
						|
 | 
						|
                {
 | 
						|
                    // z = rms_norm(x)
 | 
						|
                    //
 | 
						|
                    // rms_norm(src1) =
 | 
						|
                    //     scale(
 | 
						|
                    //         src1,
 | 
						|
                    //         div(
 | 
						|
                    //             1,
 | 
						|
                    //             sqrt(
 | 
						|
                    //                 add(
 | 
						|
                    //                     scale(
 | 
						|
                    //                         sum(
 | 
						|
                    //                             sqr(
 | 
						|
                    //                                 src1)),
 | 
						|
                    //                         (1.0/N)),
 | 
						|
                    //                     eps))));
 | 
						|
 | 
						|
                    // postorder:
 | 
						|
                    // ## op    args         grad
 | 
						|
                    // 00 param src1         grad[#00]
 | 
						|
                    // 01 const 1
 | 
						|
                    // 02 sqr   (#00)        grad[#02]
 | 
						|
                    // 03 sum   (#02)        grad[#03]
 | 
						|
                    // 04 const 1/N
 | 
						|
                    // 05 scale (#03, #04)   grad[#05]
 | 
						|
                    // 06 const eps
 | 
						|
                    // 07 add   (#05, #06)   grad[#07]
 | 
						|
                    // 08 sqrt  (#07)        grad[#08]
 | 
						|
                    // 09 div   (#01,#08)    grad[#09]
 | 
						|
                    // 10 scale (#00,#09)    grad[#10]
 | 
						|
                    //
 | 
						|
                    // backward pass, given grad[#10]
 | 
						|
                    // #10: scale
 | 
						|
                    // grad[#00] += scale(grad[#10],#09)
 | 
						|
                    // grad[#09] += sum(mul(grad[#10],#00))
 | 
						|
                    // #09: div
 | 
						|
                    // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
 | 
						|
                    // #08: sqrt
 | 
						|
                    // grad[#07] += mul(grad[#08], div(0.5, #08))
 | 
						|
                    // #07: add
 | 
						|
                    // grad[#05] += grad[#07]
 | 
						|
                    // #05: scale
 | 
						|
                    // grad[#03] += scale(grad[#05],#04)
 | 
						|
                    // #03: sum
 | 
						|
                    // grad[#02] += repeat(grad[#03], #02)
 | 
						|
                    // #02:
 | 
						|
                    // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
 | 
						|
                    //
 | 
						|
                    // substitute and simplify:
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
 | 
						|
                    // grad[#02] = repeat(grad[#03], #02)
 | 
						|
                    // grad[#02] = repeat(scale(grad[#05],#04), #02)
 | 
						|
                    // grad[#02] = repeat(scale(grad[#07],#04), #02)
 | 
						|
                    // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
 | 
						|
                    // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
 | 
						|
                    // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
 | 
						|
                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
 | 
						|
                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
 | 
						|
                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
 | 
						|
                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
 | 
						|
                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
 | 
						|
                    // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
 | 
						|
                    // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
 | 
						|
                    // a = b*c + d*e
 | 
						|
                    // a = b*c*f/f + d*e*f/f
 | 
						|
                    // a = (b*c*f + d*e*f)*(1/f)
 | 
						|
                    // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
 | 
						|
                    // a = (b + d*e/c)*c
 | 
						|
                    // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
 | 
						|
                    // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
 | 
						|
                    // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
 | 
						|
                    // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
 | 
						|
                    // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
 | 
						|
                    // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
 | 
						|
                    // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
 | 
						|
                    // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
 | 
						|
                    // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | 
						|
                    // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | 
						|
                }
 | 
						|
                // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | 
						|
                // post-order:
 | 
						|
                // dx := x
 | 
						|
                // dx := scale(dx,-mean_xdz/mean_eps)
 | 
						|
                // dx := add(dx, dz)
 | 
						|
                // dx := scale(dx, rrms)
 | 
						|
                float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | 
						|
 | 
						|
                // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
 | 
						|
                ggml_vec_cpy_f32  (ne00, dx, x);
 | 
						|
                // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
 | 
						|
                ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
 | 
						|
                ggml_vec_acc_f32  (ne00, dx, dz);
 | 
						|
                ggml_vec_scale_f32(ne00, dx, rrms);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_rms_norm_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rms_norm_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_group_norm
 | 
						|
 | 
						|
static void ggml_compute_forward_group_norm_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
 | 
						|
    float eps;
 | 
						|
    memcpy(&eps, dst->op_params + 1, sizeof(float));
 | 
						|
 | 
						|
    int n_channels = src0->ne[2];
 | 
						|
    int n_groups = dst->op_params[0];
 | 
						|
    int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
 | 
						|
    for (int i = ith; i < n_groups; i += nth) {
 | 
						|
        int start = i * n_channels_per_group;
 | 
						|
        int end = start + n_channels_per_group;
 | 
						|
        if (end > n_channels) {
 | 
						|
            end = n_channels;
 | 
						|
        }
 | 
						|
        int step = end - start;
 | 
						|
 | 
						|
        for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
            ggml_float sum = 0.0;
 | 
						|
            for (int64_t i02 = start; i02 < end; i02++) {
 | 
						|
                for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
 | 
						|
 | 
						|
                    ggml_float sumr = 0.0;
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        sumr += (ggml_float)x[i00];
 | 
						|
                    }
 | 
						|
                    sum += sumr;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            const float mean = sum / (ne00 * ne01 * step);
 | 
						|
 | 
						|
            ggml_float sum2 = 0.0;
 | 
						|
            for (int64_t i02 = start; i02 < end; i02++) {
 | 
						|
                for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
 | 
						|
 | 
						|
                    float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
 | 
						|
 | 
						|
                    ggml_float sumr = 0.0;
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        float v = x[i00] - mean;
 | 
						|
                        y[i00] = v;
 | 
						|
                        sumr += (ggml_float)(v * v);
 | 
						|
                    }
 | 
						|
                    sum2 += sumr;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            const float variance = sum2 / (ne00 * ne01 * step);
 | 
						|
            const float scale = 1.0f / sqrtf(variance + eps);
 | 
						|
 | 
						|
            for (int64_t i02 = start; i02 < end; i02++) {
 | 
						|
                for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
 | 
						|
                    ggml_vec_scale_f32(ne00, y, scale);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_group_norm(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_group_norm_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_l2_norm
 | 
						|
 | 
						|
static void ggml_compute_forward_l2_norm_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    float eps;
 | 
						|
    memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    GGML_ASSERT(eps >= 0.0f);
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | 
						|
                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                ggml_float sum = 0.0;
 | 
						|
                for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                    sum += (ggml_float)(x[i00] * x[i00]);
 | 
						|
                }
 | 
						|
 | 
						|
                float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | 
						|
 | 
						|
                memcpy(y, x, ne00 * sizeof(float));
 | 
						|
 | 
						|
                const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
 | 
						|
 | 
						|
                ggml_vec_scale_f32(ne00, y, scale);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_l2_norm(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_l2_norm_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_out_prod
 | 
						|
 | 
						|
static void ggml_compute_forward_out_prod_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_ASSERT(ne0 == ne00);
 | 
						|
    GGML_ASSERT(ne1 == ne10);
 | 
						|
    GGML_ASSERT(ne2 == ne12);
 | 
						|
    GGML_ASSERT(ne3 == ne13);
 | 
						|
 | 
						|
    GGML_ASSERT(ne2 % ne02 == 0);
 | 
						|
    GGML_ASSERT(ne3 % ne03 == 0);
 | 
						|
 | 
						|
    // we don't support permuted src0 or src1
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    // dst cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 == sizeof(float));
 | 
						|
    // GGML_ASSERT(nb0 <= nb1);
 | 
						|
    // GGML_ASSERT(nb1 <= nb2);
 | 
						|
    // GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    // nb01 >= nb00 - src0 is not transposed
 | 
						|
    //   compute by src0 rows
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    // dst[:,:,:,:] = 0
 | 
						|
    // for i2,i3:
 | 
						|
    //   for i1:
 | 
						|
    //     for i01:
 | 
						|
    //       for i0:
 | 
						|
    //         dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
 | 
						|
 | 
						|
    // parallelize by last three dimensions
 | 
						|
 | 
						|
    // total rows in dst
 | 
						|
    const int64_t nr = ne1*ne2*ne3;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int64_t dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int64_t ir0 = dr*ith;
 | 
						|
    const int64_t ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    // block-tiling attempt
 | 
						|
    const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
 | 
						|
    const int64_t blck_1 = 16;
 | 
						|
 | 
						|
    // dps == dst per src0, used for group query attention
 | 
						|
    const int64_t dps2 = ne2 / ne02;
 | 
						|
    const int64_t dps3 = ne3 / ne03;
 | 
						|
 | 
						|
    for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
 | 
						|
        const int64_t bir1 = MIN(bir + blck_1, ir1);
 | 
						|
        for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
 | 
						|
            const int64_t bne01 = MIN(bi01 + blck_0, ne01);
 | 
						|
            for (int64_t ir = bir; ir < bir1; ++ir) {
 | 
						|
                // dst indices
 | 
						|
                const int64_t i3 = ir/(ne2*ne1);
 | 
						|
                const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
                const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
                const int64_t i02 = i2 / dps2;
 | 
						|
                const int64_t i03 = i3 / dps3;
 | 
						|
 | 
						|
                //const int64_t i10 = i1;
 | 
						|
                const int64_t i12 = i2;
 | 
						|
                const int64_t i13 = i3;
 | 
						|
 | 
						|
#if GGML_VEC_MAD_UNROLL > 2
 | 
						|
                const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
 | 
						|
                for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
 | 
						|
                    const int64_t i11 = i01;
 | 
						|
 | 
						|
                    float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
                    float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
 | 
						|
                    float * d  = (float *) ((char *)  dst->data + (          i1*nb1   + i2*nb2   + i3*nb3));
 | 
						|
 | 
						|
                    ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
 | 
						|
                }
 | 
						|
                for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
 | 
						|
                    const int64_t i11 = i01;
 | 
						|
 | 
						|
                    float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
                    float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
 | 
						|
                    float * d  = (float *) ((char *)  dst->data + (          i1*nb1   + i2*nb2   + i3*nb3));
 | 
						|
 | 
						|
                    ggml_vec_mad_f32(ne0, d, s0, *s1);
 | 
						|
                }
 | 
						|
#else
 | 
						|
                for (int64_t i01 = bi01; i01 < bne01; ++i01) {
 | 
						|
                    const int64_t i11 = i01;
 | 
						|
 | 
						|
                    float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
                    float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
 | 
						|
                    float * d  = (float *) ((char *)  dst->data + (          i1*nb1 + i2*nb2 + i3*nb3));
 | 
						|
 | 
						|
                    ggml_vec_mad_f32(ne0, d, s0, *s1);
 | 
						|
                }
 | 
						|
#endif
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_out_prod_q_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
    ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
 | 
						|
 | 
						|
    GGML_ASSERT(ne02 == ne12);
 | 
						|
    GGML_ASSERT(ne03 == ne13);
 | 
						|
    GGML_ASSERT(ne2  == ne12);
 | 
						|
    GGML_ASSERT(ne3  == ne13);
 | 
						|
 | 
						|
    // we don't support permuted src0 dim0
 | 
						|
    GGML_ASSERT(nb00 == ggml_type_size(type));
 | 
						|
 | 
						|
    // dst dim0 cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 == sizeof(float));
 | 
						|
    // GGML_ASSERT(nb0 <= nb1);
 | 
						|
    // GGML_ASSERT(nb1 <= nb2);
 | 
						|
    // GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    GGML_ASSERT(ne0 == ne00);
 | 
						|
    GGML_ASSERT(ne1 == ne10);
 | 
						|
    GGML_ASSERT(ne2 == ne02);
 | 
						|
    GGML_ASSERT(ne3 == ne03);
 | 
						|
 | 
						|
    // nb01 >= nb00 - src0 is not transposed
 | 
						|
    //   compute by src0 rows
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    // parallelize by last three dimensions
 | 
						|
 | 
						|
    // total rows in dst
 | 
						|
    const int64_t nr = ne1*ne2*ne3;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int64_t dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int64_t ir0 = dr*ith;
 | 
						|
    const int64_t ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    // dst[:,:,:,:] = 0
 | 
						|
    // for i2,i3:
 | 
						|
    //   for i1:
 | 
						|
    //     for i01:
 | 
						|
    //       for i0:
 | 
						|
    //         dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
 | 
						|
 | 
						|
    float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
    for (int64_t ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // dst indices
 | 
						|
        const int64_t i3 = ir/(ne2*ne1);
 | 
						|
        const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
 | 
						|
        const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | 
						|
 | 
						|
        const int64_t i02 = i2;
 | 
						|
        const int64_t i03 = i3;
 | 
						|
 | 
						|
        //const int64_t i10 = i1;
 | 
						|
        const int64_t i12 = i2;
 | 
						|
        const int64_t i13 = i3;
 | 
						|
 | 
						|
        for (int64_t i01 = 0; i01 < ne01; ++i01) {
 | 
						|
            const int64_t i11 = i01;
 | 
						|
 | 
						|
            float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
 | 
						|
            float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
 | 
						|
            float * d  = (float *) ((char *)  dst->data + (          i1*nb1 + i2*nb2 + i3*nb3));
 | 
						|
 | 
						|
            dequantize_row_q(s0, wdata, ne0);
 | 
						|
            ggml_vec_mad_f32(ne0, d, wdata, *s1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_out_prod(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_out_prod_q_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error"); // todo
 | 
						|
                // ggml_compute_forward_out_prod_f16_f32(params, dst);
 | 
						|
            }
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_out_prod_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_scale
 | 
						|
 | 
						|
static void ggml_compute_forward_scale_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    // scale factor
 | 
						|
    float v;
 | 
						|
    memcpy(&v, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    const size_t nb01 = src0->nb[1];
 | 
						|
 | 
						|
    const size_t nb1 = dst->nb[1];
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        if (dst->data != src0->data) {
 | 
						|
            // src0 is same shape as dst => same indices
 | 
						|
            memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
 | 
						|
        }
 | 
						|
        ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_scale(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_scale_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_set
 | 
						|
 | 
						|
static void ggml_compute_forward_set_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | 
						|
 | 
						|
    // view src0 and dst with these strides and data offset inbytes during set
 | 
						|
    // nb0 is implicitly element_size because src0 and dst are contiguous
 | 
						|
    size_t nb1     = ((int32_t *) dst->op_params)[0];
 | 
						|
    size_t nb2     = ((int32_t *) dst->op_params)[1];
 | 
						|
    size_t nb3     = ((int32_t *) dst->op_params)[2];
 | 
						|
    size_t offset  = ((int32_t *) dst->op_params)[3];
 | 
						|
    bool   inplace = (bool) ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
    if (!inplace) {
 | 
						|
        if (params->ith == 0) {
 | 
						|
            // memcpy needs to be synchronized across threads to avoid race conditions.
 | 
						|
            // => do it in INIT phase
 | 
						|
            memcpy(
 | 
						|
                ((char *)  dst->data),
 | 
						|
                ((char *) src0->data),
 | 
						|
                ggml_nbytes(dst));
 | 
						|
        }
 | 
						|
        ggml_barrier(params->threadpool);
 | 
						|
    }
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr = ggml_nrows(src1);
 | 
						|
    const int nc = src1->ne[0];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb)
 | 
						|
 | 
						|
    // src0 and dst as viewed during set
 | 
						|
    const size_t nb0 = ggml_element_size(src0);
 | 
						|
 | 
						|
    const int im0 = (ne10 == 0 ? 0 : ne10-1);
 | 
						|
    const int im1 = (ne11 == 0 ? 0 : ne11-1);
 | 
						|
    const int im2 = (ne12 == 0 ? 0 : ne12-1);
 | 
						|
    const int im3 = (ne13 == 0 ? 0 : ne13-1);
 | 
						|
 | 
						|
    GGML_ASSERT(offset + im0*nb0  + im1*nb1  + im2*nb2  + im3*nb3  <= ggml_nbytes(dst));
 | 
						|
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are viewed with shape of src1 and offset
 | 
						|
        // => same indices
 | 
						|
        const int i3 = ir/(ne12*ne11);
 | 
						|
        const int i2 = (ir - i3*ne12*ne11)/ne11;
 | 
						|
        const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
 | 
						|
 | 
						|
        ggml_vec_cpy_f32(nc,
 | 
						|
                (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
 | 
						|
                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_set_i32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | 
						|
 | 
						|
    // view src0 and dst with these strides and data offset inbytes during set
 | 
						|
    // nb0 is implicitly element_size because src0 and dst are contiguous
 | 
						|
    size_t nb1     = ((int32_t *) dst->op_params)[0];
 | 
						|
    size_t nb2     = ((int32_t *) dst->op_params)[1];
 | 
						|
    size_t nb3     = ((int32_t *) dst->op_params)[2];
 | 
						|
    size_t offset  = ((int32_t *) dst->op_params)[3];
 | 
						|
    bool   inplace = (bool) ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
    if (!inplace) {
 | 
						|
        if (params->ith == 0) {
 | 
						|
            // memcpy needs to be synchronized across threads to avoid race conditions.
 | 
						|
            // => do it in INIT phase
 | 
						|
            memcpy(
 | 
						|
                ((char *)  dst->data),
 | 
						|
                ((char *) src0->data),
 | 
						|
                ggml_nbytes(dst));
 | 
						|
        }
 | 
						|
        ggml_barrier(params->threadpool);
 | 
						|
    }
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr = ggml_nrows(src1);
 | 
						|
    const int nc = src1->ne[0];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb)
 | 
						|
 | 
						|
    // src0 and dst as viewed during set
 | 
						|
    const size_t nb0 = ggml_element_size(src0);
 | 
						|
 | 
						|
    const int im0 = (ne10 == 0 ? 0 : ne10-1);
 | 
						|
    const int im1 = (ne11 == 0 ? 0 : ne11-1);
 | 
						|
    const int im2 = (ne12 == 0 ? 0 : ne12-1);
 | 
						|
    const int im3 = (ne13 == 0 ? 0 : ne13-1);
 | 
						|
 | 
						|
    GGML_ASSERT(offset + im0*nb0  + im1*nb1  + im2*nb2  + im3*nb3  <= ggml_nbytes(dst));
 | 
						|
 | 
						|
    GGML_ASSERT(nb10 == sizeof(int32_t));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // src0 and dst are viewed with shape of src1 and offset
 | 
						|
        // => same indices
 | 
						|
        const int i3 = ir/(ne12*ne11);
 | 
						|
        const int i2 = (ir - i3*ne12*ne11)/ne11;
 | 
						|
        const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
 | 
						|
 | 
						|
        ggml_vec_cpy_i32(nc,
 | 
						|
                (int32_t *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
 | 
						|
                (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_set(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_set_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_set_i32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q8_1:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_cpy
 | 
						|
 | 
						|
void ggml_compute_forward_cpy(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    ggml_compute_forward_dup(params, dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_cont
 | 
						|
 | 
						|
void ggml_compute_forward_cont(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    ggml_compute_forward_dup(params, dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_reshape
 | 
						|
 | 
						|
void ggml_compute_forward_reshape(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    // NOP
 | 
						|
    GGML_UNUSED(params);
 | 
						|
    GGML_UNUSED(dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_view
 | 
						|
 | 
						|
void ggml_compute_forward_view(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    // NOP
 | 
						|
    GGML_UNUSED(params);
 | 
						|
    GGML_UNUSED(dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_permute
 | 
						|
 | 
						|
void ggml_compute_forward_permute(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    // NOP
 | 
						|
    GGML_UNUSED(params);
 | 
						|
    GGML_UNUSED(dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_transpose
 | 
						|
 | 
						|
void ggml_compute_forward_transpose(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    // NOP
 | 
						|
    GGML_UNUSED(params);
 | 
						|
    GGML_UNUSED(dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_get_rows
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_q(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t nc = ne00;
 | 
						|
    const int64_t nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
    ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
 | 
						|
 | 
						|
    assert(ne0  == nc);
 | 
						|
    assert(ne02 == ne11);
 | 
						|
    assert(nb00 == ggml_type_size(type));
 | 
						|
    assert(ggml_nrows(dst) == nr);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t i = ir0; i < ir1; ++i) {
 | 
						|
        const int64_t i12 = i/(ne11*ne10);
 | 
						|
        const int64_t i11 = (i - i12*ne11*ne10)/ne10;
 | 
						|
        const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
 | 
						|
        const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
 | 
						|
 | 
						|
        GGML_ASSERT(i01 >= 0 && i01 < ne01);
 | 
						|
 | 
						|
        dequantize_row_q(
 | 
						|
                (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
 | 
						|
                     (float *) ((char *)  dst->data + i10*nb1  + i11*nb2  + i12*nb3), nc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t nc = ne00;
 | 
						|
    const int64_t nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    assert(ne0  == nc);
 | 
						|
    assert(ne02 == ne11);
 | 
						|
    assert(nb00 == sizeof(ggml_fp16_t));
 | 
						|
    assert(ggml_nrows(dst) == nr);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t i = ir0; i < ir1; ++i) {
 | 
						|
        const int64_t i12 = i/(ne11*ne10);
 | 
						|
        const int64_t i11 = (i - i12*ne11*ne10)/ne10;
 | 
						|
        const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
 | 
						|
        const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
 | 
						|
 | 
						|
        GGML_ASSERT(i01 >= 0 && i01 < ne01);
 | 
						|
 | 
						|
        ggml_cpu_fp16_to_fp32(
 | 
						|
            (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
 | 
						|
                       (float *) ((char *)  dst->data + i10*nb1  + i11*nb2  + i12*nb3), nc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_bf16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t nc = ne00;
 | 
						|
    const int64_t nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    assert(ne0  == nc);
 | 
						|
    assert(ne02 == ne11);
 | 
						|
    assert(nb00 == sizeof(ggml_bf16_t));
 | 
						|
    assert(ggml_nrows(dst) == nr);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t i = ir0; i < ir1; ++i) {
 | 
						|
        const int64_t i12 = i/(ne11*ne10);
 | 
						|
        const int64_t i11 = (i - i12*ne11*ne10)/ne10;
 | 
						|
        const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
 | 
						|
        const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
 | 
						|
 | 
						|
        GGML_ASSERT(i01 >= 0 && i01 < ne01);
 | 
						|
 | 
						|
        ggml_cpu_bf16_to_fp32(
 | 
						|
            (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
 | 
						|
                        (float *) ((char *)  dst->data + i10*nb1  + i11*nb2  + i12*nb3), nc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t nc = ne00;
 | 
						|
    const int64_t nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    assert(ne0  == nc);
 | 
						|
    assert(ne02 == ne11);
 | 
						|
    assert(nb00 == sizeof(float));
 | 
						|
    assert(ggml_nrows(dst) == nr);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t i = ir0; i < ir1; ++i) {
 | 
						|
        const int64_t i12 = i/(ne11*ne10);
 | 
						|
        const int64_t i11 = (i - i12*ne11*ne10)/ne10;
 | 
						|
        const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
 | 
						|
        const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
 | 
						|
 | 
						|
        GGML_ASSERT(i01 >= 0 && i01 < ne01);
 | 
						|
 | 
						|
        ggml_vec_cpy_f32(nc,
 | 
						|
                (float *) ((char *)  dst->data + i10*nb1  + i11*nb2  + i12*nb3),
 | 
						|
                (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_get_rows(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q8_1:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_q(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_bf16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
 | 
						|
    //static bool first = true;
 | 
						|
    //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
 | 
						|
    //if (first) {
 | 
						|
    //    first = false;
 | 
						|
    //} else {
 | 
						|
    //    for (int k = 0; k < dst->ne[1]; ++k) {
 | 
						|
    //        for (int j = 0; j < dst->ne[0]/16; ++j) {
 | 
						|
    //            for (int i = 0; i < 16; ++i) {
 | 
						|
    //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
 | 
						|
    //            }
 | 
						|
    //            printf("\n");
 | 
						|
    //        }
 | 
						|
    //        printf("\n");
 | 
						|
    //    }
 | 
						|
    //    printf("\n");
 | 
						|
    //    exit(0);
 | 
						|
    //}
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_get_rows_back
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_back_f32_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst));
 | 
						|
 | 
						|
    // ggml_compute_forward_dup_same_cont(params, opt0, dst);
 | 
						|
 | 
						|
    memset(dst->data, 0, ggml_nbytes(dst));
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    GGML_ASSERT( dst->ne[0] == nc);
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    for (int i = 0; i < nr; ++i) {
 | 
						|
        const int r = ((int32_t *) src1->data)[i];
 | 
						|
 | 
						|
        for (int j = 0; j < nc; ++j) {
 | 
						|
            ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
 | 
						|
            ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rows_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst));
 | 
						|
 | 
						|
    // ggml_compute_forward_dup_same_cont(params, opt0, dst);
 | 
						|
 | 
						|
    memset(dst->data, 0, ggml_nbytes(dst));
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nelements(src1);
 | 
						|
 | 
						|
    GGML_ASSERT( dst->ne[0] == nc);
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    for (int i = 0; i < nr; ++i) {
 | 
						|
        const int r = ((int32_t *) src1->data)[i];
 | 
						|
 | 
						|
        ggml_vec_add_f32(nc,
 | 
						|
                (float *) ((char *)  dst->data + r*dst->nb[1]),
 | 
						|
                (float *) ((char *)  dst->data + r*dst->nb[1]),
 | 
						|
                (float *) ((char *) src0->data + i*src0->nb[1]));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_get_rows_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_back_f32_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rows_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
 | 
						|
    //static bool first = true;
 | 
						|
    //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
 | 
						|
    //if (first) {
 | 
						|
    //    first = false;
 | 
						|
    //} else {
 | 
						|
    //    for (int k = 0; k < dst->ne[1]; ++k) {
 | 
						|
    //        for (int j = 0; j < dst->ne[0]/16; ++j) {
 | 
						|
    //            for (int i = 0; i < 16; ++i) {
 | 
						|
    //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
 | 
						|
    //            }
 | 
						|
    //            printf("\n");
 | 
						|
    //        }
 | 
						|
    //        printf("\n");
 | 
						|
    //    }
 | 
						|
    //    printf("\n");
 | 
						|
    //    exit(0);
 | 
						|
    //}
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_diag
 | 
						|
 | 
						|
static void ggml_compute_forward_diag_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(ne00 == ne0);
 | 
						|
    GGML_ASSERT(ne00 == ne1);
 | 
						|
    GGML_ASSERT(ne01 == 1);
 | 
						|
    GGML_ASSERT(ne02 == ne2);
 | 
						|
    GGML_ASSERT(ne03 == ne3);
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb0  == sizeof(float));
 | 
						|
 | 
						|
    for (int i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int i2 = 0; i2 < ne2; i2++) {
 | 
						|
            for (int i1 = 0; i1 < ne1; i1++) {
 | 
						|
                float * d = (float *)((char *)  dst->data + i3*nb3  + i2*nb2 + i1*nb1);
 | 
						|
                float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
 | 
						|
                for (int i0 = 0; i0 < i1; i0++) {
 | 
						|
                    d[i0] = 0;
 | 
						|
                }
 | 
						|
                d[i1] = s[i1];
 | 
						|
                for (int i0 = i1+1; i0 < ne0; i0++) {
 | 
						|
                    d[i0] = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_diag(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_diag_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_diag_mask_inf
 | 
						|
 | 
						|
static void ggml_compute_forward_diag_mask_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst,
 | 
						|
        const float value) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int  n_past  = ((int32_t *) dst->op_params)[0];
 | 
						|
    const bool inplace = src0->data == dst->data;
 | 
						|
 | 
						|
    GGML_ASSERT(n_past >= 0);
 | 
						|
 | 
						|
    if (!inplace) {
 | 
						|
        if (ith == 0) {
 | 
						|
            // memcpy needs to be synchronized across threads to avoid race conditions.
 | 
						|
            // => do it in INIT phase
 | 
						|
            GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | 
						|
            GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | 
						|
            memcpy(
 | 
						|
                ((char *)  dst->data),
 | 
						|
                ((char *) src0->data),
 | 
						|
                ggml_nbytes(dst));
 | 
						|
        }
 | 
						|
        ggml_barrier(params->threadpool);
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
 | 
						|
    const int n  = ggml_nrows(src0);
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = src0->ne[1];
 | 
						|
    const int nz = n/nr;
 | 
						|
 | 
						|
    GGML_ASSERT( dst->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    for (int k = 0; k < nz; k++) {
 | 
						|
        for (int j = ith; j < nr; j += nth) {
 | 
						|
            for (int i = n_past; i < nc; i++) {
 | 
						|
                if (i > n_past + j) {
 | 
						|
                    *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_diag_mask_inf(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_diag_mask_zero(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_diag_mask_f32(params, dst, 0);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_soft_max
 | 
						|
 | 
						|
static void ggml_compute_forward_soft_max_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    assert(ggml_is_contiguous(dst));
 | 
						|
    assert(ggml_are_same_shape(src0, dst));
 | 
						|
 | 
						|
    float scale    = 1.0f;
 | 
						|
    float max_bias = 0.0f;
 | 
						|
 | 
						|
    memcpy(&scale,    (float *) dst->op_params + 0, sizeof(float));
 | 
						|
    memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    //const int64_t ne11 = src1 ? src1->ne[1] : 1;
 | 
						|
 | 
						|
    // TODO: is this supposed to be ceil instead of floor?
 | 
						|
    //       https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
 | 
						|
    const uint32_t n_head      = ne02;
 | 
						|
    const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
 | 
						|
 | 
						|
    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | 
						|
    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
 | 
						|
 | 
						|
    const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        // ALiBi
 | 
						|
        const uint32_t h = (i1/ne01)%ne02; // head
 | 
						|
        const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
 | 
						|
 | 
						|
        float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
 | 
						|
        float * dp = (float *)((char *)  dst->data +  i1*dst->nb[1]);
 | 
						|
 | 
						|
        // broadcast the mask across rows
 | 
						|
        ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
 | 
						|
        float       * mp_f32 = src1 ? (float       *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
 | 
						|
 | 
						|
        ggml_vec_cpy_f32  (nc, wp, sp);
 | 
						|
        ggml_vec_scale_f32(nc, wp, scale);
 | 
						|
        if (mp_f32) {
 | 
						|
            if (use_f16) {
 | 
						|
                for (int i = 0; i < nc; ++i) {
 | 
						|
                    wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                for (int i = 0; i < nc; ++i) {
 | 
						|
                    wp[i] += slope*mp_f32[i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int i = 0; i < nc; ++i) {
 | 
						|
            //printf("p[%d] = %f\n", i, p[i]);
 | 
						|
            assert(!isnan(wp[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        float max = -INFINITY;
 | 
						|
        ggml_vec_max_f32(nc, &max, wp);
 | 
						|
 | 
						|
        ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
 | 
						|
        assert(sum > 0.0);
 | 
						|
 | 
						|
        sum = 1.0/sum;
 | 
						|
        ggml_vec_scale_f32(nc, dp, sum);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int i = 0; i < nc; ++i) {
 | 
						|
            assert(!isnan(dp[i]));
 | 
						|
            assert(!isinf(dp[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_soft_max(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_soft_max_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ggml_compute_forward_soft_max_ext_back
 | 
						|
 | 
						|
static void ggml_compute_forward_soft_max_ext_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src1));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src1, dst));
 | 
						|
 | 
						|
    float scale    = 1.0f;
 | 
						|
    float max_bias = 0.0f;
 | 
						|
 | 
						|
    memcpy(&scale,    (const float *) dst->op_params + 0, sizeof(float));
 | 
						|
    memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
 | 
						|
 | 
						|
    GGML_ASSERT(max_bias == 0.0f);
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
    const int nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
 | 
						|
        float *y  = (float *)((char *) src1->data + i1*src1->nb[1]);
 | 
						|
        float *dx = (float *)((char *) dst->data  + i1*dst->nb[1]);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int i = 0; i < nc; ++i) {
 | 
						|
            //printf("p[%d] = %f\n", i, p[i]);
 | 
						|
            assert(!isnan(dy[i]));
 | 
						|
            assert(!isnan(y[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        // Jii = yi - yi*yi
 | 
						|
        // Jij = -yi*yj
 | 
						|
        // J = diag(y)-y.T*y
 | 
						|
        // dx = J * dy
 | 
						|
        // dxk = sum_i(Jki * dyi)
 | 
						|
        // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
 | 
						|
        // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
 | 
						|
        // dxk = sum_i(-yk*yi * dyi) + yk*dyk
 | 
						|
        // dxk = -yk * sum_i(yi * dyi) + yk*dyk
 | 
						|
        // dxk = -yk * dot(y, dy) + yk*dyk
 | 
						|
        // dxk = yk * (- dot(y, dy) + dyk)
 | 
						|
        // dxk = yk * (dyk - dot(y, dy))
 | 
						|
        //
 | 
						|
        // post-order:
 | 
						|
        // dot_y_dy := dot(y, dy)
 | 
						|
        // dx := dy
 | 
						|
        // dx := dx - dot_y_dy
 | 
						|
        // dx := dx * y
 | 
						|
 | 
						|
        // linear runtime, no additional memory
 | 
						|
        float dot_y_dy = 0;
 | 
						|
        ggml_vec_dot_f32  (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
 | 
						|
        ggml_vec_cpy_f32  (nc, dx, dy);
 | 
						|
        ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
 | 
						|
        ggml_vec_mul_f32  (nc, dx, dx, y);
 | 
						|
        ggml_vec_scale_f32(nc, dx, scale);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int i = 0; i < nc; ++i) {
 | 
						|
            assert(!isnan(dx[i]));
 | 
						|
            assert(!isinf(dx[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_soft_max_ext_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_soft_max_ext_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_clamp
 | 
						|
 | 
						|
static void ggml_compute_forward_clamp_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    float min;
 | 
						|
    float max;
 | 
						|
    memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
 | 
						|
    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int n  = ggml_nrows(src0);
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
 | 
						|
    const size_t nb00 = src0->nb[0];
 | 
						|
    const size_t nb01 = src0->nb[1];
 | 
						|
 | 
						|
    const size_t nb0 = dst->nb[0];
 | 
						|
    const size_t nb1 = dst->nb[1];
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    for (int j = ith; j < n; j += nth) {
 | 
						|
        float * dst_ptr  = (float *) ((char *)  dst->data + j*nb1);
 | 
						|
        float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
 | 
						|
 | 
						|
        for (int i = 0; i < nc; i++) {
 | 
						|
            dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_clamp_f16(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    float min;
 | 
						|
    float max;
 | 
						|
    memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
 | 
						|
    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int n  = ggml_nrows(src0);
 | 
						|
    const int nc = src0->ne[0];
 | 
						|
 | 
						|
    const size_t nb00 = src0->nb[0];
 | 
						|
    const size_t nb01 = src0->nb[1];
 | 
						|
 | 
						|
    const size_t nb0 = dst->nb[0];
 | 
						|
    const size_t nb1 = dst->nb[1];
 | 
						|
 | 
						|
    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    for (int j = ith; j < n; j += nth) {
 | 
						|
        ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *)  dst->data + j*nb1);
 | 
						|
        ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
 | 
						|
 | 
						|
        for (int i = 0; i < nc; i++) {
 | 
						|
            float v = GGML_FP16_TO_FP32(src0_ptr[i]);
 | 
						|
            dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_clamp(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_clamp_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_clamp_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
        case GGML_TYPE_Q8_1:
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_TQ1_0:
 | 
						|
        case GGML_TYPE_TQ2_0:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
        case GGML_TYPE_Q8_K:
 | 
						|
        case GGML_TYPE_I8:
 | 
						|
        case GGML_TYPE_I16:
 | 
						|
        case GGML_TYPE_I32:
 | 
						|
        case GGML_TYPE_I64:
 | 
						|
        case GGML_TYPE_F64:
 | 
						|
        case GGML_TYPE_COUNT:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_rope
 | 
						|
 | 
						|
static float rope_yarn_ramp(const float low, const float high, const int i0) {
 | 
						|
    const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
 | 
						|
    return 1 - MIN(1, MAX(0, y));
 | 
						|
}
 | 
						|
 | 
						|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
 | 
						|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
 | 
						|
static void rope_yarn(
 | 
						|
    float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
 | 
						|
    float * cos_theta, float * sin_theta) {
 | 
						|
    // Get n-d rotational scaling corrected for extrapolation
 | 
						|
    float theta_interp = freq_scale * theta_extrap;
 | 
						|
    float theta = theta_interp;
 | 
						|
    if (ext_factor != 0.0f) {
 | 
						|
        float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
 | 
						|
        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
 | 
						|
 | 
						|
        // Get n-d magnitude scaling corrected for interpolation
 | 
						|
        mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
 | 
						|
    }
 | 
						|
    *cos_theta = cosf(theta) * mscale;
 | 
						|
    *sin_theta = sinf(theta) * mscale;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_rope_cache_init(
 | 
						|
     float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
 | 
						|
     float * cache, float sin_sign, float theta_scale) {
 | 
						|
    // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
 | 
						|
    float theta = theta_base;
 | 
						|
    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | 
						|
        const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
 | 
						|
        rope_yarn(
 | 
						|
            theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
 | 
						|
        );
 | 
						|
        cache[i0 + 1] *= sin_sign;
 | 
						|
 | 
						|
        theta *= theta_scale;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_mrope_cache_init(
 | 
						|
     float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
 | 
						|
     float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
 | 
						|
     float * cache, float sin_sign, float theta_scale) {
 | 
						|
    // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
 | 
						|
    float theta_t = theta_base_t;
 | 
						|
    float theta_h = theta_base_h;
 | 
						|
    float theta_w = theta_base_w;
 | 
						|
    float theta_e = theta_base_e;  // extra position id for vision encoder
 | 
						|
    int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
 | 
						|
    int sec_w = sections[1] + sections[0];
 | 
						|
    int sec_e = sections[2] + sec_w;
 | 
						|
    GGML_ASSERT(sect_dims <= ne0);
 | 
						|
 | 
						|
    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | 
						|
        const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
 | 
						|
 | 
						|
        int sector = (i0 / 2) % sect_dims;
 | 
						|
        if (indep_sects) {
 | 
						|
            // compute theta independently for each dim sections
 | 
						|
            // (i.e. reset corresponding theta when `i0` go from one section to another)
 | 
						|
            if (sector == 0) {
 | 
						|
                theta_t = theta_base_t;
 | 
						|
            }
 | 
						|
            else if (sector == sections[0]) {
 | 
						|
                theta_h = theta_base_h;;
 | 
						|
            }
 | 
						|
            else if (sector == sec_w) {
 | 
						|
                theta_w = theta_base_w;
 | 
						|
            }
 | 
						|
            else if (sector == sec_e) {
 | 
						|
                theta_e = theta_base_e;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        float theta = theta_t;
 | 
						|
        if (sector >= sections[0] && sector < sec_w) {
 | 
						|
            theta = theta_h;
 | 
						|
        }
 | 
						|
        else if (sector >= sec_w && sector < sec_w + sections[2]) {
 | 
						|
            theta = theta_w;
 | 
						|
        }
 | 
						|
        else if (sector >= sec_w + sections[2]) {
 | 
						|
            theta = theta_e;
 | 
						|
        }
 | 
						|
 | 
						|
        rope_yarn(
 | 
						|
            theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
 | 
						|
        );
 | 
						|
        cache[i0 + 1] *= sin_sign;
 | 
						|
 | 
						|
        theta_t *= theta_scale;
 | 
						|
        theta_w *= theta_scale;
 | 
						|
        theta_h *= theta_scale;
 | 
						|
        theta_e *= theta_scale;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_rope_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst,
 | 
						|
        const bool forward) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
    const ggml_tensor * src2 = dst->src[2];
 | 
						|
 | 
						|
    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | 
						|
    int sections[4];
 | 
						|
 | 
						|
    //const int n_past     = ((int32_t *) dst->op_params)[0];
 | 
						|
    const int n_dims     = ((int32_t *) dst->op_params)[1];
 | 
						|
    const int mode       = ((int32_t *) dst->op_params)[2];
 | 
						|
    //const int n_ctx      = ((int32_t *) dst->op_params)[3];
 | 
						|
    const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | 
						|
    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | 
						|
    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | 
						|
    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | 
						|
    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | 
						|
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | 
						|
    memcpy(§ions,    (int32_t *) dst->op_params + 11, sizeof(int)*4);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | 
						|
    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr = ggml_nrows(dst);
 | 
						|
 | 
						|
    GGML_ASSERT(n_dims <= ne0);
 | 
						|
    GGML_ASSERT(n_dims % 2 == 0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    // row index used to determine which thread to use
 | 
						|
    int ir = 0;
 | 
						|
 | 
						|
    const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | 
						|
 | 
						|
    float corr_dims[2];
 | 
						|
    ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
 | 
						|
 | 
						|
    const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
 | 
						|
    const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;  // ggml_rope_multi, multimodal rotary position embedding
 | 
						|
    const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
 | 
						|
 | 
						|
    if (is_mrope) {
 | 
						|
        GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_vision) {
 | 
						|
        GGML_ASSERT(n_dims == ne0/2);
 | 
						|
    }
 | 
						|
 | 
						|
    const float * freq_factors = NULL;
 | 
						|
    if (src2 != NULL) {
 | 
						|
        GGML_ASSERT(src2->type == GGML_TYPE_F32);
 | 
						|
        GGML_ASSERT(src2->ne[0] >= n_dims / 2);
 | 
						|
        freq_factors = (const float *) src2->data;
 | 
						|
    }
 | 
						|
 | 
						|
    // backward process uses inverse rotation by cos and sin.
 | 
						|
    // cos and sin build a rotation matrix, where the inverse is the transpose.
 | 
						|
    // this essentially just switches the sign of sin.
 | 
						|
    const float sin_sign = forward ? 1.0f : -1.0f;
 | 
						|
 | 
						|
    const int32_t * pos = (const int32_t *) src1->data;
 | 
						|
 | 
						|
    for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
 | 
						|
        for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
 | 
						|
 | 
						|
            float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
 | 
						|
            if (!is_mrope) {
 | 
						|
                const int64_t p = pos[i2];
 | 
						|
                ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                const int64_t p_t = pos[i2];
 | 
						|
                const int64_t p_h = pos[i2 + ne2];
 | 
						|
                const int64_t p_w = pos[i2 + ne2 * 2];
 | 
						|
                const int64_t p_e = pos[i2 + ne2 * 3];
 | 
						|
                ggml_mrope_cache_init(
 | 
						|
                    p_t, p_h, p_w, p_e, sections, is_vision,
 | 
						|
                    freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
 | 
						|
            }
 | 
						|
 | 
						|
            for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
 | 
						|
                if (ir++ < ir0) continue;
 | 
						|
                if (ir   > ir1) break;
 | 
						|
 | 
						|
                if (is_neox || is_mrope) {
 | 
						|
                    if (is_vision){
 | 
						|
                        for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                            const int64_t ic = i0/2;
 | 
						|
 | 
						|
                            const float cos_theta = cache[i0 + 0];
 | 
						|
                            const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                            const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                            float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                            const float x0 = src[0];
 | 
						|
                            const float x1 = src[n_dims];
 | 
						|
 | 
						|
                            dst_data[0]      = x0*cos_theta - x1*sin_theta;
 | 
						|
                            dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                            const int64_t ic = i0/2;
 | 
						|
 | 
						|
                            const float cos_theta = cache[i0 + 0];
 | 
						|
                            const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                            const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                            float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                            const float x0 = src[0];
 | 
						|
                            const float x1 = src[n_dims/2];
 | 
						|
 | 
						|
                            dst_data[0]        = x0*cos_theta - x1*sin_theta;
 | 
						|
                            dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                        const float cos_theta = cache[i0 + 0];
 | 
						|
                        const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                        const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | 
						|
                              float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | 
						|
 | 
						|
                        const float x0 = src[0];
 | 
						|
                        const float x1 = src[1];
 | 
						|
 | 
						|
                        dst_data[0] = x0*cos_theta - x1*sin_theta;
 | 
						|
                        dst_data[1] = x0*sin_theta + x1*cos_theta;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (is_vision) {
 | 
						|
                    for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
 | 
						|
                        const int64_t ic = i0/2;
 | 
						|
 | 
						|
                        const float cos_theta = cache[i0 + 0];
 | 
						|
                        const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                        const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                        float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                        const float x0 = src[0];
 | 
						|
                        const float x1 = src[n_dims];
 | 
						|
 | 
						|
                        dst_data[0]      = x0*cos_theta - x1*sin_theta;
 | 
						|
                        dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    // fill the remain channels with data from src tensor
 | 
						|
                    for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
 | 
						|
                        const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | 
						|
                        float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | 
						|
 | 
						|
                        dst_data[0] = src[0];
 | 
						|
                        dst_data[1] = src[1];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// TODO: deduplicate f16/f32 code
 | 
						|
static void ggml_compute_forward_rope_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst,
 | 
						|
        const bool forward) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
    const ggml_tensor * src2 = dst->src[2];
 | 
						|
 | 
						|
    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | 
						|
    int sections[4];
 | 
						|
 | 
						|
    //const int n_past     = ((int32_t *) dst->op_params)[0];
 | 
						|
    const int n_dims     = ((int32_t *) dst->op_params)[1];
 | 
						|
    const int mode       = ((int32_t *) dst->op_params)[2];
 | 
						|
    //const int n_ctx      = ((int32_t *) dst->op_params)[3];
 | 
						|
    const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
 | 
						|
    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | 
						|
    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | 
						|
    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | 
						|
    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | 
						|
    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | 
						|
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | 
						|
    memcpy(§ions,    (int32_t *) dst->op_params + 11, sizeof(int)*4);
 | 
						|
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | 
						|
    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | 
						|
 | 
						|
    GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr = ggml_nrows(dst);
 | 
						|
 | 
						|
    GGML_ASSERT(n_dims <= ne0);
 | 
						|
    GGML_ASSERT(n_dims % 2 == 0);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    // row index used to determine which thread to use
 | 
						|
    int ir = 0;
 | 
						|
 | 
						|
    const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | 
						|
 | 
						|
    float corr_dims[2];
 | 
						|
    ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
 | 
						|
 | 
						|
    const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
 | 
						|
    const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
 | 
						|
    const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
 | 
						|
 | 
						|
    if (is_mrope) {
 | 
						|
        GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_vision) {
 | 
						|
        GGML_ASSERT(n_dims == ne0/2);
 | 
						|
    }
 | 
						|
 | 
						|
    const float * freq_factors = NULL;
 | 
						|
    if (src2 != NULL) {
 | 
						|
        GGML_ASSERT(src2->type == GGML_TYPE_F32);
 | 
						|
        GGML_ASSERT(src2->ne[0] >= n_dims / 2);
 | 
						|
        freq_factors = (const float *) src2->data;
 | 
						|
    }
 | 
						|
 | 
						|
    // backward process uses inverse rotation by cos and sin.
 | 
						|
    // cos and sin build a rotation matrix, where the inverse is the transpose.
 | 
						|
    // this essentially just switches the sign of sin.
 | 
						|
    const float sin_sign = forward ? 1.0f : -1.0f;
 | 
						|
 | 
						|
    const int32_t * pos = (const int32_t *) src1->data;
 | 
						|
 | 
						|
    for (int64_t i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int64_t i2 = 0; i2 < ne2; i2++) {
 | 
						|
 | 
						|
            float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
 | 
						|
            if (!is_mrope) {
 | 
						|
                const int64_t p = pos[i2];
 | 
						|
                ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                const int64_t p_t = pos[i2];
 | 
						|
                const int64_t p_h = pos[i2 + ne2];
 | 
						|
                const int64_t p_w = pos[i2 + ne2 * 2];
 | 
						|
                const int64_t p_e = pos[i2 + ne2 * 3];
 | 
						|
                ggml_mrope_cache_init(
 | 
						|
                    p_t, p_h, p_w, p_e, sections, is_vision,
 | 
						|
                    freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
 | 
						|
            }
 | 
						|
 | 
						|
            for (int64_t i1 = 0; i1 < ne1; i1++) {
 | 
						|
                if (ir++ < ir0) continue;
 | 
						|
                if (ir   > ir1) break;
 | 
						|
 | 
						|
                if (is_neox || is_mrope) {
 | 
						|
                    if (is_vision) {
 | 
						|
                        for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                            const int64_t ic = i0/2;
 | 
						|
 | 
						|
                            const float cos_theta = cache[i0 + 0];
 | 
						|
                            const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                            const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                            ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                            const float x0 = GGML_FP16_TO_FP32(src[0]);
 | 
						|
                            const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
 | 
						|
 | 
						|
                            dst_data[0]      = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | 
						|
                            dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                            const int64_t ic = i0/2;
 | 
						|
 | 
						|
                            const float cos_theta = cache[i0 + 0];
 | 
						|
                            const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                            const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                            ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                            const float x0 = GGML_FP16_TO_FP32(src[0]);
 | 
						|
                            const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
 | 
						|
 | 
						|
                            dst_data[0]        = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | 
						|
                            dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
 | 
						|
                        const float cos_theta = cache[i0 + 0];
 | 
						|
                        const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                        const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | 
						|
                              ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | 
						|
 | 
						|
                        const float x0 = GGML_FP16_TO_FP32(src[0]);
 | 
						|
                        const float x1 = GGML_FP16_TO_FP32(src[1]);
 | 
						|
 | 
						|
                        dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | 
						|
                        dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (is_vision) {
 | 
						|
                    for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
 | 
						|
                        const int64_t ic = i0/2;
 | 
						|
 | 
						|
                        const float cos_theta = cache[i0 + 0];
 | 
						|
                        const float sin_theta = cache[i0 + 1];
 | 
						|
 | 
						|
                        const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
 | 
						|
                        ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + ic*nb0);
 | 
						|
 | 
						|
                        const float x0 = GGML_FP16_TO_FP32(src[0]);
 | 
						|
                        const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
 | 
						|
 | 
						|
                        dst_data[0]      = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | 
						|
                        dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
 | 
						|
                        const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | 
						|
                        ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | 
						|
 | 
						|
                        dst_data[0] = src[0];
 | 
						|
                        dst_data[1] = src[1];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_rope(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rope_f16(params, dst, true);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rope_f32(params, dst, true);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_rope_back
 | 
						|
 | 
						|
void ggml_compute_forward_rope_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rope_f16(params, dst, false);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rope_f32(params, dst, false);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_conv_transpose_1d
 | 
						|
 | 
						|
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nk = ne00*ne01*ne02;
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(params->wdata, 0, params->wsize);
 | 
						|
 | 
						|
        // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
 | 
						|
        {
 | 
						|
            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | 
						|
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
 | 
						|
                    ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        dst_data[i00*ne02 + i02] = src[i00];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // permute source data (src1) from (L x Cin) to (Cin x L)
 | 
						|
        {
 | 
						|
            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
 | 
						|
            ggml_fp16_t * dst_data = wdata;
 | 
						|
 | 
						|
            for (int64_t i11 = 0; i11 < ne11; i11++) {
 | 
						|
                const float * const src = (float *)((char *) src1->data + i11*nb11);
 | 
						|
                for (int64_t i10 = 0; i10 < ne10; i10++) {
 | 
						|
                    dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // need to zero dst since we are accumulating into it
 | 
						|
        memset(dst->data, 0, ggml_nbytes(dst));
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
 | 
						|
 | 
						|
    // total rows in dst
 | 
						|
    const int nr = ne1;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    ggml_fp16_t * const wdata     = (ggml_fp16_t *) params->wdata + 0;
 | 
						|
    ggml_fp16_t * const wdata_src = wdata + nk;
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | 
						|
        ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
 | 
						|
        for (int i10 = 0; i10 < ne10; i10++) {
 | 
						|
            const int i1n = i10*ne11;
 | 
						|
            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                float v = 0;
 | 
						|
                ggml_vec_dot_f16(ne02, &v, 0,
 | 
						|
                        (ggml_fp16_t *)    wdata_src + i1n, 0,
 | 
						|
                        (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
 | 
						|
                dst_data[i10*s0 + i00] += v;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_conv_transpose_1d_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nk = ne00*ne01*ne02;
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(params->wdata, 0, params->wsize);
 | 
						|
 | 
						|
        // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
 | 
						|
        {
 | 
						|
            float * const wdata = (float *) params->wdata + 0;
 | 
						|
 | 
						|
            for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
 | 
						|
                    float * dst_data = wdata + i01*ne00*ne02;
 | 
						|
                    for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        dst_data[i00*ne02 + i02] = src[i00];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // prepare source data (src1)
 | 
						|
        {
 | 
						|
            float * const wdata = (float *) params->wdata + nk;
 | 
						|
            float * dst_data = wdata;
 | 
						|
 | 
						|
            for (int64_t i11 = 0; i11 < ne11; i11++) {
 | 
						|
                const float * const src = (float *)((char *) src1->data + i11*nb11);
 | 
						|
                for (int64_t i10 = 0; i10 < ne10; i10++) {
 | 
						|
                    dst_data[i10*ne11 + i11] = src[i10];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // need to zero dst since we are accumulating into it
 | 
						|
        memset(dst->data, 0, ggml_nbytes(dst));
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
 | 
						|
 | 
						|
    // total rows in dst
 | 
						|
    const int nr = ne1;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    float * const wdata     = (float *) params->wdata + 0;
 | 
						|
    float * const wdata_src = wdata + nk;
 | 
						|
 | 
						|
    for (int i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | 
						|
        float * wdata_kernel = wdata + i1*ne02*ne00;
 | 
						|
        for (int i10 = 0; i10 < ne10; i10++) {
 | 
						|
            const int i1n = i10*ne11;
 | 
						|
            for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                float v = 0;
 | 
						|
                ggml_vec_dot_f32(ne02, &v, 0,
 | 
						|
                        wdata_src + i1n, 0,
 | 
						|
                        wdata_kernel + i00*ne02, 0, 1);
 | 
						|
                dst_data[i10*s0 + i00] += v;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_conv_transpose_1d(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_conv_transpose_1d_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_im2col_f32
 | 
						|
// src0: kernel [OC, IC, KH, KW]
 | 
						|
// src1: image [N, IC, IH, IW]
 | 
						|
// dst:  result [N, OH, OW, IC*KH*KW]
 | 
						|
static void ggml_compute_forward_im2col_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS;
 | 
						|
 | 
						|
    const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
 | 
						|
    const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
 | 
						|
    const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
 | 
						|
    const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
 | 
						|
    const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
 | 
						|
    const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
 | 
						|
    const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t N  = is_2D ? ne13 : ne12;
 | 
						|
    const int64_t IC = is_2D ? ne12 : ne11;
 | 
						|
    const int64_t IH = is_2D ? ne11 : 1;
 | 
						|
    const int64_t IW = ne10;
 | 
						|
 | 
						|
    const int64_t KH = is_2D ? ne01 : 1;
 | 
						|
    const int64_t KW = ne00;
 | 
						|
 | 
						|
    const int64_t OH = is_2D ? ne2 : 1;
 | 
						|
    const int64_t OW = ne1;
 | 
						|
 | 
						|
    int ofs0 = is_2D ? nb13 : nb12;
 | 
						|
    int ofs1 = is_2D ? nb12 : nb11;
 | 
						|
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
 | 
						|
    {
 | 
						|
        float * const wdata = (float *) dst->data;
 | 
						|
 | 
						|
        for (int64_t in = 0; in < N; in++) {
 | 
						|
            for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
 | 
						|
                for (int64_t iow = 0; iow < OW; iow++) {
 | 
						|
                    for (int64_t iic = ith; iic < IC; iic += nth) {
 | 
						|
 | 
						|
                        // micro kernel
 | 
						|
                        float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
 | 
						|
                        const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
 | 
						|
 | 
						|
                        for (int64_t ikh = 0; ikh < KH; ikh++) {  // 1
 | 
						|
                            for (int64_t ikw = 0; ikw < KW; ikw++) {
 | 
						|
                                const int64_t iiw = iow*s0 + ikw*d0 - p0;
 | 
						|
                                const int64_t iih = ioh*s1 + ikh*d1 - p1;
 | 
						|
 | 
						|
                                if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
 | 
						|
                                    dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
 | 
						|
                                } else {
 | 
						|
                                    dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ggml_compute_forward_im2col_f16
 | 
						|
// src0: kernel [OC, IC, KH, KW]
 | 
						|
// src1: image [N, IC, IH, IW]
 | 
						|
// dst:  result [N, OH, OW, IC*KH*KW]
 | 
						|
static void ggml_compute_forward_im2col_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS;
 | 
						|
 | 
						|
    const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
 | 
						|
    const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
 | 
						|
    const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
 | 
						|
    const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
 | 
						|
    const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
 | 
						|
    const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
 | 
						|
    const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t N  = is_2D ? ne13 : ne12;
 | 
						|
    const int64_t IC = is_2D ? ne12 : ne11;
 | 
						|
    const int64_t IH = is_2D ? ne11 : 1;
 | 
						|
    const int64_t IW = ne10;
 | 
						|
 | 
						|
    const int64_t KH = is_2D ? ne01 : 1;
 | 
						|
    const int64_t KW = ne00;
 | 
						|
 | 
						|
    const int64_t OH = is_2D ? ne2 : 1;
 | 
						|
    const int64_t OW = ne1;
 | 
						|
 | 
						|
    int ofs0 = is_2D ? nb13 : nb12;
 | 
						|
    int ofs1 = is_2D ? nb12 : nb11;
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
 | 
						|
    {
 | 
						|
        ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
        for (int64_t in = 0; in < N; in++) {
 | 
						|
            for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
 | 
						|
                for (int64_t iow = 0; iow < OW; iow++) {
 | 
						|
                    for (int64_t iic = ith; iic < IC; iic += nth) {
 | 
						|
 | 
						|
                        // micro kernel
 | 
						|
                        ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
 | 
						|
                        const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
 | 
						|
 | 
						|
                        for (int64_t ikh = 0; ikh < KH; ikh++) {  // 1
 | 
						|
                            for (int64_t ikw = 0; ikw < KW; ikw++) {
 | 
						|
                                const int64_t iiw = iow*s0 + ikw*d0 - p0;
 | 
						|
                                const int64_t iih = ioh*s1 + ikh*d1 - p1;
 | 
						|
 | 
						|
                                if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
 | 
						|
                                    dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
 | 
						|
                                } else {
 | 
						|
                                    dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_im2col(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
    switch (dst->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_im2col_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_im2col_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_im2col_back_f32
 | 
						|
 | 
						|
void ggml_compute_forward_im2col_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
 | 
						|
    const ggml_tensor * src1 = dst->src[1]; // convolution kernel
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS;
 | 
						|
 | 
						|
    const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
 | 
						|
    const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
 | 
						|
    const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
 | 
						|
    const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
 | 
						|
    const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
 | 
						|
    const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
 | 
						|
    const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t N  = is_2D ? ne3 : ne2;
 | 
						|
    const int64_t IC = is_2D ? ne2 : ne1;
 | 
						|
    const int64_t IH = is_2D ? ne1 : 1;
 | 
						|
    const int64_t IW = ne0;
 | 
						|
 | 
						|
    const int64_t KH = is_2D ? ne11 : 1;
 | 
						|
    const int64_t KW = ne10;
 | 
						|
 | 
						|
    const int64_t OH = is_2D ? ne02 : 1;
 | 
						|
    const int64_t OW = ne01;
 | 
						|
 | 
						|
    int ofs0 = is_2D ? nb3 : nb2;
 | 
						|
    int ofs1 = is_2D ? nb2 : nb1;
 | 
						|
 | 
						|
    GGML_ASSERT(nb0  == sizeof(float));
 | 
						|
 | 
						|
    // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
 | 
						|
    {
 | 
						|
        float * const wdata = (float *) dst->data;
 | 
						|
 | 
						|
        for (int64_t in = 0; in < N; in++) {
 | 
						|
            for (int64_t iic = ith; iic < IC; iic += nth) {
 | 
						|
                for (int64_t iih = 0; iih < IH; iih++) {
 | 
						|
                    for (int64_t iiw = 0; iiw < IW; iiw++) {
 | 
						|
 | 
						|
                        // micro kernel
 | 
						|
                        float grad = 0.0f;
 | 
						|
                        for (int64_t ikh = 0; ikh < KH; ikh++) {
 | 
						|
                            for (int64_t ikw = 0; ikw < KW; ikw++) {
 | 
						|
                                // For s0 > 1 some values were skipped over in the forward pass.
 | 
						|
                                // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
 | 
						|
                                const int64_t tmpw = (iiw + p0 - ikw*d0);
 | 
						|
                                if (tmpw % s0 != 0) {
 | 
						|
                                    continue;
 | 
						|
                                }
 | 
						|
                                const int64_t iow = tmpw / s0;
 | 
						|
 | 
						|
                                // Equivalent logic as above except for s1.
 | 
						|
                                int64_t ioh;
 | 
						|
                                if (is_2D) {
 | 
						|
                                    const int64_t tmph = iih + p1 - ikh*d1;
 | 
						|
 | 
						|
                                    if (tmph % s1 != 0) {
 | 
						|
                                        continue;
 | 
						|
                                    }
 | 
						|
 | 
						|
                                    ioh = tmph / s1;
 | 
						|
                                } else {
 | 
						|
                                    ioh = 0;
 | 
						|
                                }
 | 
						|
 | 
						|
                                if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
 | 
						|
                                    continue;
 | 
						|
                                }
 | 
						|
 | 
						|
                                const float * const grad_in = (const float *) src0->data
 | 
						|
                                    + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
 | 
						|
                                grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
 | 
						|
                        dst_data[iih*IW + iiw] = grad;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_conv_transpose_2d
 | 
						|
 | 
						|
void ggml_compute_forward_conv_transpose_2d(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nk = ne00*ne01*ne02*ne03;
 | 
						|
 | 
						|
    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | 
						|
    GGML_ASSERT(nb10 == sizeof(float));
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(params->wdata, 0, params->wsize);
 | 
						|
 | 
						|
        // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
 | 
						|
        {
 | 
						|
            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | 
						|
 | 
						|
            for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
                for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
 | 
						|
                    ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
 | 
						|
                    for (int64_t i01 = 0; i01 < ne01; i01++) {
 | 
						|
                        for (int64_t i00 = 0; i00 < ne00; i00++) {
 | 
						|
                            dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
 | 
						|
        {
 | 
						|
            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
 | 
						|
            for (int i12 = 0; i12 < ne12; i12++) {
 | 
						|
                for (int i11 = 0; i11 < ne11; i11++) {
 | 
						|
                    const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
 | 
						|
                    ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
 | 
						|
                    for (int i10 = 0; i10 < ne10; i10++) {
 | 
						|
                        dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        memset(dst->data, 0, ggml_nbytes(dst));
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    const int32_t stride = ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    // total patches in dst
 | 
						|
    const int np = ne2;
 | 
						|
 | 
						|
    // patches per thread
 | 
						|
    const int dp = (np + nth - 1)/nth;
 | 
						|
 | 
						|
    // patch range for this thread
 | 
						|
    const int ip0 = dp*ith;
 | 
						|
    const int ip1 = MIN(ip0 + dp, np);
 | 
						|
 | 
						|
    ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | 
						|
    ggml_fp16_t * const wdata_src = wdata + nk;
 | 
						|
 | 
						|
    for (int i2 = ip0; i2 < ip1; i2++) { // Cout
 | 
						|
        float * dst_data = (float *)((char *) dst->data + i2*nb2);
 | 
						|
        ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
 | 
						|
        for (int i11 = 0; i11 < ne11; i11++) {
 | 
						|
            for (int i10 = 0; i10 < ne10; i10++) {
 | 
						|
                const int i1n = i11*ne10*ne12 + i10*ne12;
 | 
						|
                for (int i01 = 0; i01 < ne01; i01++) {
 | 
						|
                    for (int i00 = 0; i00 < ne00; i00++) {
 | 
						|
                        float v = 0;
 | 
						|
                        ggml_vec_dot_f16(ne03, &v, 0,
 | 
						|
                                wdata_src + i1n, 0,
 | 
						|
                                wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
 | 
						|
                        dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_conv_2d_dw
 | 
						|
 | 
						|
struct ggml_conv_2d_dw_params {
 | 
						|
    int64_t channels;
 | 
						|
    int64_t batch;
 | 
						|
    int64_t src_w;
 | 
						|
    int64_t src_h;
 | 
						|
    int64_t dst_w;
 | 
						|
    int64_t dst_h;
 | 
						|
    int64_t knl_w;
 | 
						|
    int64_t knl_h;
 | 
						|
    int stride_x;
 | 
						|
    int stride_y;
 | 
						|
    int pad_x;
 | 
						|
    int pad_y;
 | 
						|
    int dilation_x;
 | 
						|
    int dilation_y;
 | 
						|
};
 | 
						|
 | 
						|
static void ggml_compute_forward_conv_2d_dw_cwhn(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const ggml_tensor * src,
 | 
						|
        const ggml_tensor * kernel,
 | 
						|
        ggml_tensor * dst,
 | 
						|
        const ggml_conv_2d_dw_params & p) {
 | 
						|
 | 
						|
    const int64_t c = p.channels;
 | 
						|
    const float * knl_data = (const float *)kernel->data;
 | 
						|
 | 
						|
    const int64_t rows_total = p.dst_h * p.batch;
 | 
						|
    const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
 | 
						|
    const int64_t row_start = params->ith * rows_per_thread;
 | 
						|
    const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
 | 
						|
 | 
						|
#ifdef GGML_SIMD
 | 
						|
    const int64_t pkg_size = GGML_F32_EPR;
 | 
						|
    const int64_t pkg_count = c / pkg_size;
 | 
						|
    const int64_t c_pkg_end = pkg_count * pkg_size;
 | 
						|
#else
 | 
						|
    const int64_t c_pkg_end = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    for (int64_t row = row_start; row < row_end; ++row) {
 | 
						|
        const int64_t dst_y = row % p.dst_h;
 | 
						|
        const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
 | 
						|
        for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
 | 
						|
            float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
 | 
						|
            const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
 | 
						|
            const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
 | 
						|
 | 
						|
#ifdef GGML_SIMD
 | 
						|
            // Vectorized loop
 | 
						|
            for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
 | 
						|
                GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
 | 
						|
                for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
 | 
						|
                    const int64_t src_y = src_y_base + knl_y * p.dilation_y;
 | 
						|
                    if (src_y < 0 || src_y >= p.src_h) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
 | 
						|
                        const int64_t src_x = src_x_base + knl_x * p.dilation_x;
 | 
						|
                        if (src_x < 0 || src_x >= p.src_w) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
 | 
						|
                        GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
 | 
						|
                        sum = GGML_F32_VEC_FMA(sum, k, s);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                GGML_F32_VEC_STORE(dst_data + c_i, sum);
 | 
						|
            }
 | 
						|
#endif
 | 
						|
            // Scalar loop
 | 
						|
            for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
 | 
						|
                float sum = 0.0f;
 | 
						|
                for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
 | 
						|
                    const int64_t src_y = src_y_base + knl_y * p.dilation_y;
 | 
						|
                    if (src_y < 0 || src_y >= p.src_h) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
 | 
						|
                        const int64_t src_x = src_x_base + knl_x * p.dilation_x;
 | 
						|
                        if (src_x < 0 || src_x >= p.src_w) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
 | 
						|
                             * src_data[(src_y * p.src_w + src_x) * c + c_i];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                dst_data[c_i] = sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_conv_2d_dw_whcn(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const ggml_tensor * src,
 | 
						|
        const ggml_tensor * kernel,
 | 
						|
        ggml_tensor * dst,
 | 
						|
        const ggml_conv_2d_dw_params & p) {
 | 
						|
 | 
						|
    const int64_t n = p.channels * p.batch;
 | 
						|
    const int64_t per_thread = (n + params->nth - 1) / params->nth;
 | 
						|
    const int64_t start = params->ith * per_thread;
 | 
						|
    const int64_t end = MIN(start + per_thread, n);
 | 
						|
 | 
						|
    for (int64_t i = start; i < end; ++i) {
 | 
						|
        const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
 | 
						|
        const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
 | 
						|
        float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
 | 
						|
 | 
						|
        for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
 | 
						|
            for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
 | 
						|
 | 
						|
                float sum = 0.0f;
 | 
						|
                for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
 | 
						|
                    const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
 | 
						|
                    if (src_y < 0 || src_y >= p.src_h) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
 | 
						|
                        const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
 | 
						|
                        if (src_x < 0 || src_x >= p.src_w) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        sum += knl_data[knl_y * p.knl_w + knl_x]
 | 
						|
                             * src_data[src_y * p.src_w + src_x];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                dst_data[dst_y * p.dst_w + dst_x] = sum;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_conv_2d_dw(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * kernel = dst->src[0];
 | 
						|
    const ggml_tensor * src = dst->src[1];
 | 
						|
    ggml_conv_2d_dw_params p;
 | 
						|
    p.channels = src->ne[2];
 | 
						|
    p.batch = src->ne[3];
 | 
						|
    p.src_w = src->ne[0];
 | 
						|
    p.src_h = src->ne[1];
 | 
						|
    p.dst_w = dst->ne[0];
 | 
						|
    p.dst_h = dst->ne[1];
 | 
						|
    p.knl_w = kernel->ne[0];
 | 
						|
    p.knl_h = kernel->ne[1];
 | 
						|
    p.stride_x = dst->op_params[0];
 | 
						|
    p.stride_y = dst->op_params[1];
 | 
						|
    p.pad_x = dst->op_params[2];
 | 
						|
    p.pad_y = dst->op_params[3];
 | 
						|
    p.dilation_x = dst->op_params[4];
 | 
						|
    p.dilation_y = dst->op_params[5];
 | 
						|
 | 
						|
    GGML_ASSERT(kernel->ne[3] == p.channels);
 | 
						|
    GGML_ASSERT(dst->ne[3] == p.batch);
 | 
						|
 | 
						|
    if (ggml_is_contiguous(src)) {
 | 
						|
        ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
 | 
						|
    } else if (ggml_is_contiguous_channels(src)) {
 | 
						|
        // kernel should also have channels most contiguous in memory
 | 
						|
        GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
 | 
						|
        ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("non-contiguous memory layout not supported");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_pool_1d_sk_p0
 | 
						|
 | 
						|
static void ggml_compute_forward_pool_1d_sk_p0(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const ggml_op_pool op,
 | 
						|
        const int k,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src = dst->src[0];
 | 
						|
 | 
						|
    assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const char * cdata = (const char *)src->data;
 | 
						|
    const char * const data_end = cdata + ggml_nbytes(src);
 | 
						|
    float * drow = (float *)dst->data;
 | 
						|
 | 
						|
    const int64_t rs = dst->ne[0];
 | 
						|
 | 
						|
    while (cdata < data_end) {
 | 
						|
        const void * srow = (const void *)cdata;
 | 
						|
        int j = 0;
 | 
						|
        for (int64_t i = 0; i < rs; ++i) {
 | 
						|
            switch (op) {
 | 
						|
                case GGML_OP_POOL_AVG:   drow[i] = 0;        break;
 | 
						|
                case GGML_OP_POOL_MAX:   drow[i] = -FLT_MAX; break;
 | 
						|
                case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
            for (int ki = 0; ki < k; ++ki) {
 | 
						|
                const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
 | 
						|
                switch (op) {
 | 
						|
                    case GGML_OP_POOL_AVG:                         drow[i] += srow_j; break;
 | 
						|
                    case GGML_OP_POOL_MAX:   if (srow_j > drow[i]) drow[i]  = srow_j; break;
 | 
						|
                    case GGML_OP_POOL_COUNT:                       GGML_ABORT("fatal error");
 | 
						|
                }
 | 
						|
                ++j;
 | 
						|
            }
 | 
						|
            switch (op) {
 | 
						|
                case GGML_OP_POOL_AVG:         drow[i] /= k; break;
 | 
						|
                case GGML_OP_POOL_MAX:                       break;
 | 
						|
                case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        cdata += src->nb[1];
 | 
						|
        drow  += rs;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_pool_1d
 | 
						|
 | 
						|
void ggml_compute_forward_pool_1d(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const int32_t * opts = (const int32_t *)dst->op_params;
 | 
						|
    ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
 | 
						|
    const int k0 = opts[1];
 | 
						|
    const int s0 = opts[2];
 | 
						|
    const int p0 = opts[3];
 | 
						|
    GGML_ASSERT(p0 == 0); // padding not supported
 | 
						|
    GGML_ASSERT(k0 == s0); // only s = k supported
 | 
						|
 | 
						|
    ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_pool_2d
 | 
						|
 | 
						|
void ggml_compute_forward_pool_2d(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src = dst->src[0];
 | 
						|
 | 
						|
    assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int32_t * opts = (const int32_t *)dst->op_params;
 | 
						|
    ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
 | 
						|
    const int k0 = opts[1];
 | 
						|
    const int k1 = opts[2];
 | 
						|
    const int s0 = opts[3];
 | 
						|
    const int s1 = opts[4];
 | 
						|
    const int p0 = opts[5];
 | 
						|
    const int p1 = opts[6];
 | 
						|
    const char * cdata = (const char*)src->data;
 | 
						|
    const char * const data_end = cdata + ggml_nbytes(src);
 | 
						|
 | 
						|
    const int64_t px = dst->ne[0];
 | 
						|
    const int64_t py = dst->ne[1];
 | 
						|
    const int64_t pa = px * py;
 | 
						|
 | 
						|
    float * dplane = (float *)dst->data;
 | 
						|
 | 
						|
    const int ka = k0 * k1;
 | 
						|
    const int offset0 = -p0;
 | 
						|
    const int offset1 = -p1;
 | 
						|
 | 
						|
    while (cdata < data_end) {
 | 
						|
        for (int oy = 0; oy < py; ++oy) {
 | 
						|
            float * const drow = dplane + oy * px;
 | 
						|
            for (int ox = 0; ox < px; ++ox) {
 | 
						|
                float * const out =  drow + ox;
 | 
						|
                switch (op) {
 | 
						|
                    case GGML_OP_POOL_AVG:     *out = 0;        break;
 | 
						|
                    case GGML_OP_POOL_MAX:     *out = -FLT_MAX; break;
 | 
						|
                    case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
 | 
						|
                }
 | 
						|
 | 
						|
                const int ix = offset0 + ox * s0;
 | 
						|
                const int iy = offset1 + oy * s1;
 | 
						|
 | 
						|
                for (int ky = 0; ky < k1; ++ky) {
 | 
						|
                    if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
 | 
						|
                    const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
 | 
						|
                    for (int kx = 0; kx < k0; ++kx) {
 | 
						|
                        int j = ix + kx;
 | 
						|
                        if (j < 0 || j >= src->ne[0]) continue;
 | 
						|
                        const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
 | 
						|
                        switch (op) {
 | 
						|
                            case GGML_OP_POOL_AVG:                     *out += srow_j; break;
 | 
						|
                            case GGML_OP_POOL_MAX: if (srow_j > *out)  *out  = srow_j; break;
 | 
						|
                            case GGML_OP_POOL_COUNT:               GGML_ABORT("fatal error");
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                switch (op) {
 | 
						|
                    case GGML_OP_POOL_AVG:           *out /= ka; break;
 | 
						|
                    case GGML_OP_POOL_MAX:                       break;
 | 
						|
                    case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        cdata  += src->nb[2];
 | 
						|
        dplane += pa;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_pool_2d_back
 | 
						|
 | 
						|
void ggml_compute_forward_pool_2d_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src  = dst->src[0];
 | 
						|
    const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
 | 
						|
 | 
						|
    assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    if (params->ith != 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int32_t * opts = (const int32_t *)dst->op_params;
 | 
						|
    ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
 | 
						|
    const int k0 = opts[1];
 | 
						|
    const int k1 = opts[2];
 | 
						|
    const int s0 = opts[3];
 | 
						|
    const int s1 = opts[4];
 | 
						|
    const int p0 = opts[5];
 | 
						|
    const int p1 = opts[6];
 | 
						|
 | 
						|
    char       * cdata  = (char       *) dst->data;
 | 
						|
    const char * cdataf = (const char *) dstf->data;
 | 
						|
    const char * const data_end = cdata + ggml_nbytes(dst);
 | 
						|
 | 
						|
    GGML_ASSERT(params->ith == 0);
 | 
						|
    memset(cdata, 0, ggml_nbytes(dst));
 | 
						|
 | 
						|
    const int64_t px = src->ne[0];
 | 
						|
    const int64_t py = src->ne[1];
 | 
						|
    const int64_t pa = px * py;
 | 
						|
 | 
						|
    const float * splane = (const float *) src->data;
 | 
						|
 | 
						|
    const int ka = k0 * k1;
 | 
						|
    const int offset0 = -p0;
 | 
						|
    const int offset1 = -p1;
 | 
						|
 | 
						|
    while (cdata < data_end) {
 | 
						|
        for (int oy = 0; oy < py; ++oy) {
 | 
						|
            const float * const srow = splane + oy * px;
 | 
						|
            for (int ox = 0; ox < px; ++ox) {
 | 
						|
                const float grad0 = srow[ox];
 | 
						|
 | 
						|
                const int ix = offset0 + ox * s0;
 | 
						|
                const int iy = offset1 + oy * s1;
 | 
						|
 | 
						|
                if (op == GGML_OP_POOL_MAX) {
 | 
						|
                    float maxval = -FLT_MAX;
 | 
						|
                    int kxmax = -1;
 | 
						|
                    int kymax = -1;
 | 
						|
 | 
						|
                    for (int ky = 0; ky < k1; ++ky) {
 | 
						|
                        if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
 | 
						|
                        for (int kx = 0; kx < k0; ++kx) {
 | 
						|
                            int j = ix + kx;
 | 
						|
                            if (j < 0 || j >= dst->ne[0]) {
 | 
						|
                                continue;
 | 
						|
                            }
 | 
						|
 | 
						|
                            const float val = dst->type == GGML_TYPE_F32 ?
 | 
						|
                                ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
 | 
						|
                            if (val <= maxval) {
 | 
						|
                                continue;
 | 
						|
                            }
 | 
						|
 | 
						|
                            maxval = val;
 | 
						|
                            kxmax = kx;
 | 
						|
                            kymax = ky;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (kxmax == -1 || kymax == -1) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
 | 
						|
                    void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
 | 
						|
                    const int j = ix + kxmax;
 | 
						|
                    if (dst->type == GGML_TYPE_F32) {
 | 
						|
                        ((float *) drow)[j] += grad0;
 | 
						|
                    } else {
 | 
						|
                        ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
 | 
						|
                    }
 | 
						|
                } else if (op == GGML_OP_POOL_AVG) {
 | 
						|
                    const float grad = grad0 / ka;
 | 
						|
 | 
						|
                    for (int ky = 0; ky < k1; ++ky) {
 | 
						|
                        if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                        void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
 | 
						|
                        for (int kx = 0; kx < k0; ++kx) {
 | 
						|
                            int j = ix + kx;
 | 
						|
                            if (j < 0 || j >= dst->ne[0]) {
 | 
						|
                                continue;
 | 
						|
                            }
 | 
						|
 | 
						|
                            if (dst->type == GGML_TYPE_F32) {
 | 
						|
                                ((float *) drow)[j] += grad;
 | 
						|
                            } else {
 | 
						|
                                ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    GGML_ASSERT(false);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        cdata  += dst->nb[2];
 | 
						|
        cdataf += dst->nb[2];
 | 
						|
        splane += pa;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_upscale
 | 
						|
 | 
						|
static void ggml_compute_forward_upscale_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const float sf0 = (float)ne0/src0->ne[0];
 | 
						|
    const float sf1 = (float)ne1/src0->ne[1];
 | 
						|
    const float sf2 = (float)ne2/src0->ne[2];
 | 
						|
    const float sf3 = (float)ne3/src0->ne[3];
 | 
						|
 | 
						|
    const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    if (mode == GGML_SCALE_MODE_NEAREST) {
 | 
						|
        for (int64_t i3 = 0; i3 < ne3; i3++) {
 | 
						|
            const int64_t i03 = i3 / sf3;
 | 
						|
            for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
                const int64_t i02 = i2 / sf2;
 | 
						|
                for (int64_t i1 = 0; i1 < ne1; i1++) {
 | 
						|
                    const int64_t i01 = i1 / sf1;
 | 
						|
                    for (int64_t i0 = 0; i0 < ne0; i0++) {
 | 
						|
                        const int64_t i00 = i0 / sf0;
 | 
						|
 | 
						|
                        const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                              float * y = (float *)((char *)  dst->data +  i0*nb0  +  i1*nb1  +  i2*nb2  +  i3*nb3);
 | 
						|
 | 
						|
                        *y = *x;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (mode == GGML_SCALE_MODE_BILINEAR) {
 | 
						|
        // setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
 | 
						|
        const float pixel_offset = 0.5f;
 | 
						|
 | 
						|
        for (int64_t i3 = 0; i3 < ne3; i3++) {
 | 
						|
            const int64_t i03 = i3 / sf3;
 | 
						|
            for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
 | 
						|
                const int64_t i02 = i2 / sf2;
 | 
						|
                for (int64_t i1 = 0; i1 < ne1; i1++) {
 | 
						|
                    const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
 | 
						|
                    int64_t y0 = (int64_t)floorf(y);
 | 
						|
                    int64_t y1 = y0 + 1;
 | 
						|
 | 
						|
                    y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
 | 
						|
                    y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
 | 
						|
 | 
						|
                    float dy = y - (float)y0;
 | 
						|
                    dy = std::max(0.0f, std::min(dy, 1.0f));
 | 
						|
 | 
						|
                    for (int64_t i0 = 0; i0 < ne0; i0++) {
 | 
						|
                        const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
 | 
						|
                        int64_t x0 = (int64_t)floorf(x);
 | 
						|
                        int64_t x1 = x0 + 1;
 | 
						|
 | 
						|
                        x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
 | 
						|
                        x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
 | 
						|
 | 
						|
                        float dx = x - (float)x0;
 | 
						|
                        dx = std::max(0.0f, std::min(dx, 1.0f));
 | 
						|
 | 
						|
                        // fetch the four surrounding pixel values and interpolate
 | 
						|
                        const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                        const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                        const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
 | 
						|
                        const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
 | 
						|
 | 
						|
                        const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
 | 
						|
 | 
						|
                        float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
 | 
						|
                        *y_dst = val;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("unsupported upscale mode");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_upscale(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_upscale_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ggml_compute_forward_pad
 | 
						|
 | 
						|
static void ggml_compute_forward_pad_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
          ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT( dst->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    float * dst_ptr = (float *) dst->data;
 | 
						|
 | 
						|
    // TODO: optimize
 | 
						|
 | 
						|
    for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | 
						|
        for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
 | 
						|
            for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | 
						|
                for (int64_t i3 = 0; i3 < ne3; ++i3) {
 | 
						|
                    const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
 | 
						|
 | 
						|
                    const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | 
						|
 | 
						|
                    if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | 
						|
                        dst_ptr[dst_idx] = *src_ptr;
 | 
						|
                    } else {
 | 
						|
                        dst_ptr[dst_idx] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_pad(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_pad_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_pad_reflect_1d
 | 
						|
 | 
						|
void ggml_compute_forward_pad_reflect_1d(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int32_t * opts = (const int32_t *) dst->op_params;
 | 
						|
    const int p0 = opts[0];
 | 
						|
    const int p1 = opts[1];
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    for (int64_t i3 = 0; i3 < ne3; i3++) {
 | 
						|
        for (int64_t i2 = 0; i2 < ne2; i2++) {
 | 
						|
            for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
 | 
						|
                float * left  = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 +         p0*nb0);
 | 
						|
                float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
 | 
						|
 | 
						|
                ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
 | 
						|
 | 
						|
                for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0];   }
 | 
						|
                for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_arange
 | 
						|
 | 
						|
static void ggml_compute_forward_arange_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    GGML_ASSERT(dst->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const float start = ggml_get_op_params_f32(dst, 0);
 | 
						|
    const float stop  = ggml_get_op_params_f32(dst, 1);
 | 
						|
    const float step  = ggml_get_op_params_f32(dst, 2);
 | 
						|
 | 
						|
    const int64_t steps = (int64_t) ceilf((stop - start) / step);
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(dst) == steps);
 | 
						|
 | 
						|
    for (int64_t i = ith; i < steps; i+= nth) {
 | 
						|
        float value = start + step * i;
 | 
						|
        ((float *)dst->data)[i] = value;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_arange(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
    switch (dst->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_arange_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_timestep_embedding_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const int dim = ggml_get_op_params_i32(dst, 0);
 | 
						|
    const int max_period = ggml_get_op_params_i32(dst, 1);
 | 
						|
 | 
						|
    int half = dim / 2;
 | 
						|
 | 
						|
    for (int64_t i = 0; i < ne00; i++) {
 | 
						|
        float * embed_data = (float *)((char *)  dst->data +  i*nb1);
 | 
						|
        for (int64_t j = ith; j < half; j += nth) {
 | 
						|
            float timestep = ((float *)src0->data)[i];
 | 
						|
            float freq = (float)expf(-logf(max_period) * j / half);
 | 
						|
            float arg = timestep * freq;
 | 
						|
            embed_data[j] = cosf(arg);
 | 
						|
            embed_data[j + half] = sinf(arg);
 | 
						|
        }
 | 
						|
        if (dim % 2 != 0 && ith == 0) {
 | 
						|
            embed_data[dim] = 0.f;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_timestep_embedding(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_timestep_embedding_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_argsort
 | 
						|
 | 
						|
static void ggml_compute_forward_argsort_f32(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(nb0 == sizeof(float));
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
 | 
						|
 | 
						|
    for (int64_t i = ith; i < nr; i += nth) {
 | 
						|
        int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
 | 
						|
        const float * src_data = (float *)((char *) src0->data + i*nb01);
 | 
						|
 | 
						|
        for (int64_t j = 0; j < ne0; j++) {
 | 
						|
            dst_data[j] = j;
 | 
						|
        }
 | 
						|
 | 
						|
        // C doesn't have a functional sort, so we do a bubble sort instead
 | 
						|
        for (int64_t j = 0; j < ne0; j++) {
 | 
						|
            for (int64_t k = j + 1; k < ne0; k++) {
 | 
						|
                if ((order == GGML_SORT_ORDER_ASC  && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
 | 
						|
                    (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
 | 
						|
                    int32_t tmp = dst_data[j];
 | 
						|
                    dst_data[j] = dst_data[k];
 | 
						|
                    dst_data[k] = tmp;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_argsort(
 | 
						|
    const ggml_compute_params * params,
 | 
						|
    ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_argsort_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_flash_attn_ext
 | 
						|
 | 
						|
static void ggml_compute_forward_flash_attn_ext_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const ggml_tensor * q,
 | 
						|
        const ggml_tensor * k,
 | 
						|
        const ggml_tensor * v,
 | 
						|
        const ggml_tensor * mask,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, neq, q,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, nek, k,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, nev, v,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb)
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t DK = nek0;
 | 
						|
    const int64_t DV = nev0;
 | 
						|
    const int64_t N  = neq1;
 | 
						|
 | 
						|
    GGML_ASSERT(ne0 == DV);
 | 
						|
    GGML_ASSERT(ne2 == N);
 | 
						|
 | 
						|
    // input tensor rows must be contiguous
 | 
						|
    GGML_ASSERT(nbq0 == ggml_type_size(q->type));
 | 
						|
    GGML_ASSERT(nbk0 == ggml_type_size(k->type));
 | 
						|
    GGML_ASSERT(nbv0 == ggml_type_size(v->type));
 | 
						|
 | 
						|
    GGML_ASSERT(neq0 == DK);
 | 
						|
    GGML_ASSERT(nek0 == DK);
 | 
						|
    GGML_ASSERT(nev0 == DV);
 | 
						|
 | 
						|
    GGML_ASSERT(neq1 == N);
 | 
						|
 | 
						|
    // dst cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb0 <= nb1);
 | 
						|
    GGML_ASSERT(nb1 <= nb2);
 | 
						|
    GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    // broadcast factors
 | 
						|
    const int64_t rk2 = neq2/nek2;
 | 
						|
    const int64_t rk3 = neq3/nek3;
 | 
						|
 | 
						|
    const int64_t rv2 = neq2/nev2;
 | 
						|
    const int64_t rv3 = neq3/nev3;
 | 
						|
 | 
						|
    // parallelize by q rows using ggml_vec_dot_f32
 | 
						|
 | 
						|
    // total rows in q
 | 
						|
    const int nr = neq1*neq2*neq3;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    float scale         = 1.0f;
 | 
						|
    float max_bias      = 0.0f;
 | 
						|
    float logit_softcap = 0.0f;
 | 
						|
 | 
						|
    memcpy(&scale,         (float *) dst->op_params + 0, sizeof(float));
 | 
						|
    memcpy(&max_bias,      (float *) dst->op_params + 1, sizeof(float));
 | 
						|
    memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
 | 
						|
 | 
						|
    if (logit_softcap != 0) {
 | 
						|
        scale /= logit_softcap;
 | 
						|
    }
 | 
						|
 | 
						|
    const uint32_t n_head      = neq2;
 | 
						|
    const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
 | 
						|
 | 
						|
    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | 
						|
    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | 
						|
 | 
						|
    ggml_type    const k_vec_dot_type      = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
 | 
						|
    ggml_from_float_t const q_to_vec_dot   = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
 | 
						|
    ggml_vec_dot_t    const kq_vec_dot     = ggml_get_type_traits_cpu(k->type)->vec_dot;
 | 
						|
    ggml_to_float_t   const v_to_float     = ggml_get_type_traits(v->type)->to_float;
 | 
						|
 | 
						|
    GGML_ASSERT((                            q_to_vec_dot) && "fattn: unsupported K-type");
 | 
						|
    GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float  ) && "fattn: unsupported V-type");
 | 
						|
 | 
						|
    // loop over n_batch and n_head
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // q indices
 | 
						|
        const int iq3 = ir/(neq2*neq1);
 | 
						|
        const int iq2 = (ir - iq3*neq2*neq1)/neq1;
 | 
						|
        const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
 | 
						|
 | 
						|
        const uint32_t h = iq2; // head index
 | 
						|
        const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
 | 
						|
 | 
						|
        float S = 0.0f;      // sum
 | 
						|
        float M = -INFINITY; // maximum KQ value
 | 
						|
 | 
						|
        float       * VKQ32 = (float       *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
 | 
						|
        float       * V32   =                 (VKQ32 + 1*DV); // (temporary) FP32 V buffer
 | 
						|
        ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
 | 
						|
        ggml_fp16_t * Q_q   = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
 | 
						|
 | 
						|
        if (v->type == GGML_TYPE_F16) {
 | 
						|
            memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
 | 
						|
        } else {
 | 
						|
            memset(VKQ32, 0, DV*sizeof(float));
 | 
						|
        }
 | 
						|
 | 
						|
        const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
 | 
						|
 | 
						|
        // k indices
 | 
						|
        const int ik3 = iq3 / rk3;
 | 
						|
        const int ik2 = iq2 / rk2;
 | 
						|
 | 
						|
        // v indices
 | 
						|
        const int iv3 = iq3 / rv3;
 | 
						|
        const int iv2 = iq2 / rv2;
 | 
						|
 | 
						|
        const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
 | 
						|
        q_to_vec_dot(pq, Q_q, DK);
 | 
						|
 | 
						|
        // online softmax / attention
 | 
						|
        // loop over n_kv and n_head_kv
 | 
						|
        // ref: https://arxiv.org/pdf/2112.05682.pdf
 | 
						|
        for (int64_t ic = 0; ic < nek1; ++ic) {
 | 
						|
            const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
 | 
						|
            if (mv == -INFINITY) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            float s; // KQ value
 | 
						|
 | 
						|
            const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
 | 
						|
            kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
 | 
						|
 | 
						|
            s = s*scale; // scale KQ value
 | 
						|
 | 
						|
            if (logit_softcap != 0.0f) {
 | 
						|
                s = logit_softcap*tanhf(s);
 | 
						|
            }
 | 
						|
 | 
						|
            s += mv; // apply mask
 | 
						|
 | 
						|
            const float Mold = M;
 | 
						|
 | 
						|
            float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
 | 
						|
            float vs = 1.0f; // post-softmax KQ value, expf(s - M)
 | 
						|
 | 
						|
            const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
 | 
						|
 | 
						|
            if (v->type == GGML_TYPE_F16) {
 | 
						|
                if (s > M) {
 | 
						|
                    // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
 | 
						|
                    M = s;
 | 
						|
                    ms = expf(Mold - M);
 | 
						|
 | 
						|
                    // V = V*expf(Mold - M)
 | 
						|
                    ggml_vec_scale_f16(DV, VKQ16, ms);
 | 
						|
                } else {
 | 
						|
                    // no new maximum, ms == 1.0f, vs != 1.0f
 | 
						|
                    vs = expf(s - M);
 | 
						|
                }
 | 
						|
 | 
						|
                // V += v*expf(s - M)
 | 
						|
                ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
 | 
						|
            } else {
 | 
						|
                if (s > M) {
 | 
						|
                    // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
 | 
						|
                    M = s;
 | 
						|
                    ms = expf(Mold - M);
 | 
						|
 | 
						|
                    // V = V*expf(Mold - M)
 | 
						|
                    ggml_vec_scale_f32(DV, VKQ32, ms);
 | 
						|
                } else {
 | 
						|
                    // no new maximum, ms == 1.0f, vs != 1.0f
 | 
						|
                    vs = expf(s - M);
 | 
						|
                }
 | 
						|
 | 
						|
                // V += v*expf(s - M)
 | 
						|
                if (v_to_float) {
 | 
						|
                    v_to_float(v_data, V32, DV);
 | 
						|
                    ggml_vec_mad_f32(DV, VKQ32, V32, vs);
 | 
						|
                } else {
 | 
						|
                    // V is F32
 | 
						|
                    ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            S = S*ms + vs; // scale and increment sum with partial sum
 | 
						|
        }
 | 
						|
 | 
						|
        if (v->type == GGML_TYPE_F16) {
 | 
						|
            for (int64_t d = 0; d < DV; ++d) {
 | 
						|
                VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // V /= S
 | 
						|
        const float S_inv = 1.0f/S;
 | 
						|
        ggml_vec_scale_f32(DV, VKQ32, S_inv);
 | 
						|
 | 
						|
        // dst indices
 | 
						|
        const int i1 = iq1;
 | 
						|
        const int i2 = iq2;
 | 
						|
        const int i3 = iq3;
 | 
						|
 | 
						|
        // original
 | 
						|
        //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
 | 
						|
 | 
						|
        // permute(0, 2, 1, 3)
 | 
						|
        memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_flash_attn_ext(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const ggml_tensor * q,
 | 
						|
        const ggml_tensor * k,
 | 
						|
        const ggml_tensor * v,
 | 
						|
        const ggml_tensor * mask,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    switch (dst->op_params[3]) {
 | 
						|
        case GGML_PREC_DEFAULT:
 | 
						|
        case GGML_PREC_F32:
 | 
						|
            {
 | 
						|
                // uses F32 accumulators
 | 
						|
                ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_flash_attn_back
 | 
						|
 | 
						|
static void ggml_compute_forward_flash_attn_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const bool masked,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * q = dst->src[0];
 | 
						|
    const ggml_tensor * k = dst->src[1];
 | 
						|
    const ggml_tensor * v = dst->src[2];
 | 
						|
    const ggml_tensor * d = dst->src[3];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, neq, q,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, nek, k,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, nev, v,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ned, d,   ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nbd, d,   nb)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne)
 | 
						|
    GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb)
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t D = neq0;
 | 
						|
    const int64_t N = neq1;
 | 
						|
    const int64_t P = nek1 - N;
 | 
						|
    const int64_t M = P + N;
 | 
						|
 | 
						|
    const int Mup  = ggml_up(M, GGML_SOFT_MAX_UNROLL);
 | 
						|
    const int mxDM = MAX(D, Mup);
 | 
						|
 | 
						|
    // GGML_ASSERT(ne0 == D);
 | 
						|
    // GGML_ASSERT(ne1 == N);
 | 
						|
    GGML_ASSERT(P >= 0);
 | 
						|
 | 
						|
    GGML_ASSERT(nbq0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nbk0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nbv0 == sizeof(float));
 | 
						|
 | 
						|
    GGML_ASSERT(neq0 == D);
 | 
						|
    GGML_ASSERT(nek0 == D);
 | 
						|
    GGML_ASSERT(nev1 == D);
 | 
						|
    GGML_ASSERT(ned0 == D);
 | 
						|
 | 
						|
    GGML_ASSERT(neq1 == N);
 | 
						|
    GGML_ASSERT(nek1 == N + P);
 | 
						|
    GGML_ASSERT(nev1 == D);
 | 
						|
    GGML_ASSERT(ned1 == N);
 | 
						|
 | 
						|
    // dst cannot be transposed or permuted
 | 
						|
    GGML_ASSERT(nb0 == sizeof(float));
 | 
						|
    GGML_ASSERT(nb0 <= nb1);
 | 
						|
    GGML_ASSERT(nb1 <= nb2);
 | 
						|
    GGML_ASSERT(nb2 <= nb3);
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    const int64_t elem_q = ggml_nelements(q);
 | 
						|
    const int64_t elem_k = ggml_nelements(k);
 | 
						|
 | 
						|
    ggml_type result_type = dst->type;
 | 
						|
    GGML_ASSERT(ggml_blck_size(result_type) == 1);
 | 
						|
    const size_t tsize = ggml_type_size(result_type);
 | 
						|
 | 
						|
    const size_t offs_q = 0;
 | 
						|
    const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
 | 
						|
    const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
 | 
						|
 | 
						|
    void * grad_q = (char *) dst->data;
 | 
						|
    void * grad_k = (char *) dst->data + offs_k;
 | 
						|
    void * grad_v = (char *) dst->data + offs_v;
 | 
						|
 | 
						|
    const size_t nbgq1 = nb0*neq0;
 | 
						|
    const size_t nbgq2 = nb0*neq0*neq1;
 | 
						|
    const size_t nbgq3 = nb0*neq0*neq1*neq2;
 | 
						|
 | 
						|
    const size_t nbgk1 = nb0*nek0;
 | 
						|
    const size_t nbgk2 = nb0*nek0*nek1;
 | 
						|
    const size_t nbgk3 = nb0*nek0*nek1*neq2;
 | 
						|
 | 
						|
    const size_t nbgv1 = nb0*nev0;
 | 
						|
    const size_t nbgv2 = nb0*nev0*nev1;
 | 
						|
    const size_t nbgv3 = nb0*nev0*nev1*neq2;
 | 
						|
 | 
						|
    // parallelize by k rows using ggml_vec_dot_f32
 | 
						|
 | 
						|
    // total rows in k
 | 
						|
    const int nr = nek2*nek3;
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    const float scale = 1.0f/sqrtf(D);
 | 
						|
 | 
						|
    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
 | 
						|
 | 
						|
    // how often k2 (and v2) is repeated in q2
 | 
						|
    int nrep = neq2/nek2;
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        // q indices
 | 
						|
        const int ik3 = ir/(nek2);
 | 
						|
        const int ik2 = ir - ik3*nek2;
 | 
						|
 | 
						|
        const int iq3 = ik3;
 | 
						|
        const int id3 = ik3;
 | 
						|
        const int iv3 = ik3;
 | 
						|
        const int iv2 = ik2;
 | 
						|
 | 
						|
        for (int irep = 0; irep < nrep; ++irep) {
 | 
						|
            const int iq2 = ik2 + irep*nek2;
 | 
						|
            const int id2 = iq2;
 | 
						|
 | 
						|
            // (ik2 + irep*nek2) % nek2 == ik2
 | 
						|
            for (int iq1 = 0; iq1 < neq1; ++iq1) {
 | 
						|
                const int id1 = iq1;
 | 
						|
 | 
						|
                // not sure about CACHE_LINE_SIZE_F32..
 | 
						|
                // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
 | 
						|
                float * S  = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
 | 
						|
                float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
 | 
						|
 | 
						|
                for (int i = M; i < Mup; ++i) {
 | 
						|
                    S[i] = -INFINITY;
 | 
						|
                }
 | 
						|
 | 
						|
                const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
 | 
						|
                for (int64_t ic = 0; ic < masked_begin; ++ic) {
 | 
						|
                    // k indices
 | 
						|
                    const int ik1 = ic;
 | 
						|
 | 
						|
                    // S indices
 | 
						|
                    const int i1 = ik1;
 | 
						|
 | 
						|
                    ggml_vec_dot_f32(neq0,
 | 
						|
                            S + i1, 0,
 | 
						|
                            (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
 | 
						|
                            (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
 | 
						|
                }
 | 
						|
 | 
						|
                // scale
 | 
						|
                ggml_vec_scale_f32(masked_begin, S, scale);
 | 
						|
 | 
						|
                for (int64_t i = masked_begin; i < M; i++) {
 | 
						|
                    S[i] = -INFINITY;
 | 
						|
                }
 | 
						|
 | 
						|
                // softmax
 | 
						|
                // exclude known -INF S[..] values from max and loop
 | 
						|
                // dont forget to set their SM values to zero
 | 
						|
                {
 | 
						|
                    float max = -INFINITY;
 | 
						|
                    ggml_vec_max_f32(masked_begin, &max, S);
 | 
						|
 | 
						|
                    ggml_float sum = 0.0;
 | 
						|
                    {
 | 
						|
#ifdef GGML_SOFT_MAX_ACCELERATE
 | 
						|
                        max = -max;
 | 
						|
                        vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
 | 
						|
                        vvexpf(SM, SM, &Mup);
 | 
						|
                        ggml_vec_sum_f32(Mup, &sum, SM);
 | 
						|
#else
 | 
						|
                        sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
 | 
						|
#endif
 | 
						|
                    }
 | 
						|
 | 
						|
                    assert(sum > 0.0);
 | 
						|
 | 
						|
                    sum = 1.0/sum;
 | 
						|
                    ggml_vec_scale_f32(masked_begin, SM, sum);
 | 
						|
 | 
						|
                }
 | 
						|
 | 
						|
                // step-by-step explanation
 | 
						|
                {
 | 
						|
                    // forward-process                    shape      grads from backward process
 | 
						|
                    // parallel_for ik2,ik3:
 | 
						|
                    //  for irep:
 | 
						|
                    //   iq2 = ik2 + irep*nek2
 | 
						|
                    //   k[:D,:M,:,:]                     [D,M,:,:]  grad[k][:D,:M,ik2,ik3]  += grad[kcur]
 | 
						|
                    //   q[:D,:N,:,:]                     [D,N,:,:]  grad[q][:D,iq1,iq2,iq3] += grad[qcur]
 | 
						|
                    //   v[:M,:D,:,:]                     [M,D,:,:]  grad[v][:M,:D,iv2,iv3]  += grad[vcur]
 | 
						|
                    //   for iq1:
 | 
						|
                    //    kcur   = k[:D,:M,ik2,ik3]       [D,M,1,1]  grad[kcur] = grad[S1].T @ qcur
 | 
						|
                    //    qcur   = q[:D,iq1,iq2,iq3]      [D,1,1,1]  grad[qcur] = grad[S1]   @ kcur
 | 
						|
                    //    vcur   = v[:M,:D,iv2,iv3]       [M,D,1,1]  grad[vcur] = grad[S5].T @ S4
 | 
						|
                    //    S0     = -Inf                   [D,1,1,1]
 | 
						|
                    //   ~S1[i]  = dot(kcur[:D,i], qcur)
 | 
						|
                    //    S1     = qcur @ kcur.T          [M,1,1,1]  grad[S1]   = grad[S2] * scale
 | 
						|
                    //    S2     = S1 * scale             [M,1,1,1]  grad[S2]   = diag_mask_zero(grad[S3], P)
 | 
						|
                    //    S3     = diag_mask_inf(S2, P)   [M,1,1,1]  grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | 
						|
                    //    S4     = softmax(S3)            [M,1,1,1]  grad[S4]   = grad[S5] @ vcur
 | 
						|
                    //   ~S5[i]  = dot(vcur[:,i], S4)
 | 
						|
                    //    S5     = S4 @ vcur.T            [D,1,1,1]  grad[S5]   = d[:D,id1,id2,id3]
 | 
						|
                    //   ~dst[i,iq1,iq2,iq3]  = S5[i]              ^
 | 
						|
                    //    dst[:D,iq1,iq2,iq3] = S5                 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
 | 
						|
                    // dst                               backward-/ grad[dst]                 = d
 | 
						|
                    //
 | 
						|
                    // output gradients with their dependencies:
 | 
						|
                    //
 | 
						|
                    // grad[kcur] = grad[S1].T @ qcur
 | 
						|
                    // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
 | 
						|
                    // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | 
						|
                    // grad[S4]   = grad[S5] @ vcur
 | 
						|
                    // grad[S4]   = d[:D,id1,id2,id3] @ vcur
 | 
						|
                    // grad[qcur] = grad[S1]   @ kcur
 | 
						|
                    // grad[vcur] = grad[S5].T @ S4
 | 
						|
                    // grad[vcur] = d[:D,id1,id2,id3].T @ S4
 | 
						|
                    //
 | 
						|
                    // in post-order:
 | 
						|
                    //
 | 
						|
                    // S1         = qcur @ kcur.T
 | 
						|
                    // S2         = S1 * scale
 | 
						|
                    // S3         = diag_mask_inf(S2, P)
 | 
						|
                    // S4         = softmax(S3)
 | 
						|
                    // grad[S4]   = d[:D,id1,id2,id3] @ vcur
 | 
						|
                    // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | 
						|
                    // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
 | 
						|
                    // grad[qcur] = grad[S1]   @ kcur
 | 
						|
                    // grad[kcur] = grad[S1].T @ qcur
 | 
						|
                    // grad[vcur] = d[:D,id1,id2,id3].T @ S4
 | 
						|
                    //
 | 
						|
                    // using less variables (SM=S4):
 | 
						|
                    //
 | 
						|
                    // S             = diag_mask_inf(qcur @ kcur.T * scale, P)
 | 
						|
                    // SM            = softmax(S)
 | 
						|
                    // S             = d[:D,iq1,iq2,iq3] @ vcur
 | 
						|
                    // dot_SM_gradSM = dot(SM, S)
 | 
						|
                    // S             = SM * (S - dot(SM, S))
 | 
						|
                    // S             = diag_mask_zero(S, P) * scale
 | 
						|
                    //
 | 
						|
                    // grad[q][:D,iq1,iq2,iq3] += S   @ kcur
 | 
						|
                    // grad[k][:D,:M,ik2,ik3]  += S.T @ qcur
 | 
						|
                    // grad[v][:M,:D,iv2,iv3]  += d[:D,id1,id2,id3].T @ SM
 | 
						|
                }
 | 
						|
 | 
						|
                // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
 | 
						|
                // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
 | 
						|
                // for ic:
 | 
						|
                //   S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
 | 
						|
                // exclude known future zero S[..] values from operation
 | 
						|
                ggml_vec_set_f32(masked_begin, S, 0);
 | 
						|
                for (int64_t ic = 0; ic < D; ++ic) {
 | 
						|
                    ggml_vec_mad_f32(masked_begin,
 | 
						|
                            S,
 | 
						|
                             (float *) ((char *) v->data + (          ic*nbv1  + iv2*nbv2 + iv3*nbv3)),
 | 
						|
                            *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
 | 
						|
                }
 | 
						|
 | 
						|
                // S = SM * (S - dot(SM, S))
 | 
						|
                float dot_SM_gradSM = 0;
 | 
						|
                ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
 | 
						|
                ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
 | 
						|
                ggml_vec_mul_f32 (masked_begin, S, S, SM);
 | 
						|
 | 
						|
                // S = diag_mask_zero(S, P) * scale
 | 
						|
                // already done by above ggml_vec_set_f32
 | 
						|
 | 
						|
                // exclude known zero S[..] values from operation
 | 
						|
                ggml_vec_scale_f32(masked_begin, S, scale);
 | 
						|
 | 
						|
                // S    shape [M,1]
 | 
						|
                // SM   shape [M,1]
 | 
						|
                // kcur shape [D,M]
 | 
						|
                // qcur shape [D,1]
 | 
						|
                // vcur shape [M,D]
 | 
						|
 | 
						|
                // grad[q][:D,iq1,iq2,iq3] += S @ kcur
 | 
						|
                // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
 | 
						|
                // for ic:
 | 
						|
                //  grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
 | 
						|
                // exclude known zero S[..] values from loop
 | 
						|
                for (int64_t ic = 0; ic < masked_begin; ++ic) {
 | 
						|
                    ggml_vec_mad_f32(D,
 | 
						|
                            (float *) ((char *) grad_q  + (iq1*nbgq1 + iq2*nbgq2  + iq3*nbgq3)),
 | 
						|
                            (float *) ((char *) k->data + (ic*nbk1   + ik2*nbk2   + ik3*nbk3)),
 | 
						|
                            S[ic]);
 | 
						|
                }
 | 
						|
 | 
						|
                // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
 | 
						|
                // for ic:
 | 
						|
                //  grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
 | 
						|
                //  grad[k][:D,ic,iq2,iq3] += S[ic]     * qcur[:D,0]
 | 
						|
                // exclude known zero S[..] values from loop
 | 
						|
                for (int64_t ic = 0; ic < masked_begin; ++ic) {
 | 
						|
                    ggml_vec_mad_f32(D,
 | 
						|
                            (float *) ((char *) grad_k  + (ic*nbgk1  + ik2*nbgk2  + ik3*nbgk3)),
 | 
						|
                            (float *) ((char *) q->data + (iq1*nbq1  + iq2*nbq2   + iq3*nbq3)),
 | 
						|
                            S[ic]);
 | 
						|
                }
 | 
						|
 | 
						|
                // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T       @ SM
 | 
						|
                // for ic:
 | 
						|
                //  grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
 | 
						|
                //  grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3]         * SM[:M]
 | 
						|
                // exclude known zero SM[..] values from mad
 | 
						|
                for (int64_t ic = 0; ic < D; ++ic) {
 | 
						|
                    ggml_vec_mad_f32(masked_begin,
 | 
						|
                            (float *) ((char *) grad_v   + (          ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
 | 
						|
                            SM,
 | 
						|
                            *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2  + id3*nbd3)));
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_flash_attn_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        const bool masked,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * q = dst->src[0];
 | 
						|
 | 
						|
    switch (q->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_ssm_conv
 | 
						|
 | 
						|
static void ggml_compute_forward_ssm_conv_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0]; // conv_x
 | 
						|
    const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nc  = src1->ne[0]; // d_conv
 | 
						|
    const int ncs = src0->ne[0]; // d_conv - 1 + n_t
 | 
						|
    const int nr  = src0->ne[1]; // d_inner
 | 
						|
    const int n_t =  dst->ne[1]; // tokens per sequence
 | 
						|
    const int n_s =  dst->ne[2]; // number of sequences in the batch
 | 
						|
 | 
						|
    GGML_ASSERT( dst->ne[0] == nr);
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src1->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
    const int ir  = ir1 - ir0;
 | 
						|
 | 
						|
    for (int i3 = 0; i3 < n_s; ++i3) {
 | 
						|
        for (int i2 = 0; i2 < n_t; ++i2) {
 | 
						|
            // {d_conv - 1 + n_t, d_inner, n_seqs}
 | 
						|
            // sliding window
 | 
						|
            const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
 | 
						|
            const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
 | 
						|
            float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
 | 
						|
 | 
						|
            // TODO: transpose the output for smaller strides for big batches?
 | 
						|
            // d_inner
 | 
						|
            for (int i1 = 0; i1 < ir; ++i1) {
 | 
						|
                // rowwise dot product
 | 
						|
                // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
 | 
						|
                float sumf = 0.0f;
 | 
						|
 | 
						|
                // d_conv
 | 
						|
                for (int i0 = 0; i0 < nc; ++i0) {
 | 
						|
                    sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
 | 
						|
                }
 | 
						|
                x[i1] = sumf;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_ssm_conv(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    switch (dst->src[0]->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_ssm_conv_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_ssm_scan
 | 
						|
 | 
						|
static void ggml_compute_forward_ssm_scan_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0]; // s  {d_state, dim, n_head, n_seqs+}
 | 
						|
    const ggml_tensor * src1 = dst->src[1]; // x  {dim, n_head, n_seq_tokens, n_seqs}
 | 
						|
    const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
 | 
						|
    const ggml_tensor * src3 = dst->src[3]; // A  {d_state, n_head} or {1, n_head}
 | 
						|
    const ggml_tensor * src4 = dst->src[4]; // B  {d_state, n_group, n_seq_tokens, n_seqs}
 | 
						|
    const ggml_tensor * src5 = dst->src[5]; // C  {d_state, n_group, n_seq_tokens, n_seqs}
 | 
						|
    const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int64_t nc = src0->ne[0]; // d_state
 | 
						|
    const int64_t nr = src0->ne[1]; // dim
 | 
						|
    const int64_t nh = src1->ne[1]; // n_head
 | 
						|
    const int64_t ng = src4->ne[1];
 | 
						|
    const int64_t nt = src1->ne[2]; // number of tokens per sequence
 | 
						|
    const int64_t ns = src1->ne[3]; // number of sequences in the batch
 | 
						|
 | 
						|
    // can't use ggml_nbytes because src1 is not necessarily contiguous
 | 
						|
    const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
 | 
						|
    GGML_ASSERT(src0->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src1->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src2->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src3->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src4->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src5->nb[0] == sizeof(float));
 | 
						|
    GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
 | 
						|
    // allows optimizing the modulo since n_group should be a power of 2
 | 
						|
    GGML_ASSERT((ng & -ng) == ng);
 | 
						|
 | 
						|
    // heads per thread
 | 
						|
    const int dh = (nh + nth - 1)/nth;
 | 
						|
 | 
						|
    // head range for this thread
 | 
						|
    const int ih0 = dh*ith;
 | 
						|
    const int ih1 = MIN(ih0 + dh, nh);
 | 
						|
 | 
						|
    const int32_t * ids = (const int32_t *) src6->data;
 | 
						|
 | 
						|
    for (int i3 = 0; i3 < ns; ++i3) {
 | 
						|
        const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
 | 
						|
              float * s  = (      float *) ((      char *) dst->data  + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
 | 
						|
 | 
						|
        for (int i2 = 0; i2 < nt; ++i2) {
 | 
						|
            const float * x  = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
 | 
						|
            const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
 | 
						|
            const float * A  = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
 | 
						|
            const float * B  = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
 | 
						|
            const float * C  = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
 | 
						|
                  float * y  = (      float *) ((      char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
 | 
						|
 | 
						|
            if (src3->ne[0] == 1) {
 | 
						|
                // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
 | 
						|
 | 
						|
                // n_head
 | 
						|
                for (int h = ih0; h < ih1; ++h) {
 | 
						|
                    // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
 | 
						|
                    const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
 | 
						|
                    const float dA = expf(dt_soft_plus * A[h]);
 | 
						|
 | 
						|
                    // dim
 | 
						|
                    for (int i1 = 0; i1 < nr; ++i1) {
 | 
						|
                        const int ii = i1 + h*nr;
 | 
						|
                        const float x_dt = x[ii] * dt_soft_plus;
 | 
						|
                        float sumf = 0.0f;
 | 
						|
#if defined(GGML_SIMD)
 | 
						|
    #if defined(__ARM_FEATURE_SVE)
 | 
						|
                        const int ggml_f32_epr = svcntw();
 | 
						|
                        const int ggml_f32_step = 1 * ggml_f32_epr;
 | 
						|
 | 
						|
                        const int np = (nc & ~(ggml_f32_step - 1));
 | 
						|
 | 
						|
                        GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
 | 
						|
 | 
						|
                        GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
 | 
						|
                        GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
 | 
						|
 | 
						|
                        for (int i = 0; i < np; i += ggml_f32_step) {
 | 
						|
                            // TODO: maybe unroll more?
 | 
						|
                            for (int j = 0; j < 1; j++) {
 | 
						|
                                GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
 | 
						|
                                GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
 | 
						|
                                GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
 | 
						|
 | 
						|
                                t0 = GGML_F32_VEC_MUL(t0, adA);
 | 
						|
                                t1 = GGML_F32_VEC_MUL(t1, axdt);
 | 
						|
 | 
						|
                                t0 = GGML_F32_VEC_ADD(t0, t1);
 | 
						|
 | 
						|
                                sum = GGML_F32_VEC_FMA(sum, t0, t2);
 | 
						|
 | 
						|
                                GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        sumf = GGML_F32xt_REDUCE_ONE(sum);
 | 
						|
    #else
 | 
						|
                        const int np = (nc & ~(GGML_F32_STEP - 1));
 | 
						|
 | 
						|
                        GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
 | 
						|
 | 
						|
                        GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
 | 
						|
                        GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
 | 
						|
 | 
						|
                        GGML_F32_VEC ax[GGML_F32_ARR];
 | 
						|
                        GGML_F32_VEC ay[GGML_F32_ARR];
 | 
						|
                        GGML_F32_VEC az[GGML_F32_ARR];
 | 
						|
 | 
						|
                        for (int i = 0; i < np; i += GGML_F32_STEP) {
 | 
						|
                            for (int j = 0; j < GGML_F32_ARR; j++) {
 | 
						|
                                ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
 | 
						|
                                ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
 | 
						|
                                az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
 | 
						|
 | 
						|
                                ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
 | 
						|
                                ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
 | 
						|
 | 
						|
                                ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
 | 
						|
 | 
						|
                                sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
 | 
						|
 | 
						|
                                GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        // reduce sum0..sum3 to sum0
 | 
						|
                        GGML_F32_VEC_REDUCE(sumf, sum);
 | 
						|
    #endif
 | 
						|
#else
 | 
						|
                        const int np = 0;
 | 
						|
#endif
 | 
						|
                        // d_state
 | 
						|
                        for (int i0 = np; i0 < nc; ++i0) {
 | 
						|
                            const int i = i0 + ii*nc;
 | 
						|
                            const int ig = i0 + (h & (ng - 1))*nc;
 | 
						|
                            // state = prev_state * dA + dB * x
 | 
						|
                            const float state = (s0[i] * dA) + (B[ig] * x_dt);
 | 
						|
                            // y = rowwise_dotprod(state, C)
 | 
						|
                            sumf += state * C[ig];
 | 
						|
                            s[i] = state;
 | 
						|
                        }
 | 
						|
                        y[ii] = sumf;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // Mamba-1 has an element-wise decay factor for the states
 | 
						|
 | 
						|
                // n_head
 | 
						|
                for (int h = ih0; h < ih1; ++h) {
 | 
						|
                    // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
 | 
						|
                    const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
 | 
						|
 | 
						|
                    // dim
 | 
						|
                    for (int i1 = 0; i1 < nr; ++i1) {
 | 
						|
                        const int ii = i1 + h*nr;
 | 
						|
                        const float x_dt = x[ii] * dt_soft_plus;
 | 
						|
#if defined(__ARM_FEATURE_SVE)
 | 
						|
                        svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
 | 
						|
                        svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
 | 
						|
                        svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
 | 
						|
 | 
						|
                        // d_state
 | 
						|
                        // TODO: what happens when (d_state % svcntw()) != 0?
 | 
						|
                        for (int64_t k = 0; k < nc; k += svcntw()) {
 | 
						|
                            svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
 | 
						|
                            svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
 | 
						|
                            svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
 | 
						|
                            svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
 | 
						|
 | 
						|
                            svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
 | 
						|
                            t1 = exp_ps_sve(svptrue_b32(), t1);
 | 
						|
                            svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
 | 
						|
 | 
						|
                            vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
 | 
						|
                            r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
 | 
						|
 | 
						|
                            GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
 | 
						|
                        }
 | 
						|
                        y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
 | 
						|
#else
 | 
						|
                        float sumf = 0.0f;
 | 
						|
                        // NOTE: can't really use GGML_SIMD here because d_state is usually 16
 | 
						|
                        //       and also because expf is used within the loop.
 | 
						|
                        // d_state
 | 
						|
                        for (int i0 = 0; i0 < nc; ++i0) {
 | 
						|
                            const int i = i0 + ii*nc;
 | 
						|
                            const int ig = i0 + (h & (ng - 1))*nc;
 | 
						|
                            // state = prev_state * dA + dB * x
 | 
						|
                            const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
 | 
						|
                            // y = rowwise_dotprod(state, C)
 | 
						|
                            sumf += state * C[ig];
 | 
						|
                            s[i] = state;
 | 
						|
                        }
 | 
						|
                        y[ii] = sumf;
 | 
						|
#endif
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            // use the output as the source when it's not the first token-wise iteration
 | 
						|
            s0 = s;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_ssm_scan(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    switch (dst->src[0]->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_ssm_scan_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_win_part
 | 
						|
 | 
						|
static void ggml_compute_forward_win_part_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    GGML_UNUSED(params);
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne)
 | 
						|
 | 
						|
    const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
 | 
						|
    const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
 | 
						|
    const int32_t w    = ((const int32_t *)(dst->op_params))[2];
 | 
						|
 | 
						|
    assert(ne00 == ne0);
 | 
						|
    assert(ne3  == nep0*nep1);
 | 
						|
 | 
						|
    // TODO: optimize / multi-thread
 | 
						|
    for (int py = 0; py < nep1; ++py) {
 | 
						|
        for (int px = 0; px < nep0; ++px) {
 | 
						|
            const int64_t i3 = py*nep0 + px;
 | 
						|
            for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | 
						|
                for (int64_t i1 = 0; i1 < ne1; ++i1) {
 | 
						|
                    for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | 
						|
                        const int64_t i02 = py*w + i2;
 | 
						|
                        const int64_t i01 = px*w + i1;
 | 
						|
                        const int64_t i00 = i0;
 | 
						|
 | 
						|
                        const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0    + i1*ne0   + i0;
 | 
						|
                        const int64_t j =                  i02*ne01*ne00 + i01*ne00 + i00;
 | 
						|
 | 
						|
                        if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
 | 
						|
                            ((float *) dst->data)[i] = 0.0f;
 | 
						|
                        } else {
 | 
						|
                            ((float *) dst->data)[i] = ((float *) src0->data)[j];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_win_part(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_win_part_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_win_unpart
 | 
						|
 | 
						|
static void ggml_compute_forward_win_unpart_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    GGML_UNUSED(params);
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
 | 
						|
    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne)
 | 
						|
 | 
						|
    const int32_t w = ((const int32_t *)(dst->op_params))[0];
 | 
						|
 | 
						|
    // padding
 | 
						|
    const int px = (w - ne1%w)%w;
 | 
						|
    //const int py = (w - ne2%w)%w;
 | 
						|
 | 
						|
    const int npx = (px + ne1)/w;
 | 
						|
    //const int npy = (py + ne2)/w;
 | 
						|
 | 
						|
    assert(ne0 == ne00);
 | 
						|
 | 
						|
    // TODO: optimize / multi-thread
 | 
						|
    for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | 
						|
        for (int64_t i1 = 0; i1 < ne1; ++i1) {
 | 
						|
            for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | 
						|
                const int ip2 = i2/w;
 | 
						|
                const int ip1 = i1/w;
 | 
						|
 | 
						|
                const int64_t i02 = i2%w;
 | 
						|
                const int64_t i01 = i1%w;
 | 
						|
                const int64_t i00 = i0;
 | 
						|
 | 
						|
                const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
 | 
						|
                const int64_t j =                                  i2*ne1*ne0    + i1*ne0   + i0;
 | 
						|
 | 
						|
                ((float *) dst->data)[j] = ((float *) src0->data)[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_win_unpart(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_win_unpart_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//gmml_compute_forward_unary
 | 
						|
 | 
						|
void ggml_compute_forward_unary(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_unary_op op = ggml_get_unary_op(dst);
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
        case GGML_UNARY_OP_ABS:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_abs(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_SGN:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sgn(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_NEG:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_neg(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_STEP:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_step(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_TANH:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_tanh(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_ELU:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_elu(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_RELU:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_relu(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_SIGMOID:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_sigmoid(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_GELU:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_GELU_ERF:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_erf(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_GELU_QUICK:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gelu_quick(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_SILU:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_silu(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_HARDSWISH:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_hardswish(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_HARDSIGMOID:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_hardsigmoid(params, dst);
 | 
						|
            } break;
 | 
						|
        case GGML_UNARY_OP_EXP:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_exp(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_get_rel_pos
 | 
						|
 | 
						|
static void ggml_compute_forward_get_rel_pos_f16(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    GGML_UNUSED(params);
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t w = ne1;
 | 
						|
 | 
						|
    ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
 | 
						|
    ggml_fp16_t * dst_data  = (ggml_fp16_t *) dst->data;
 | 
						|
 | 
						|
    for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | 
						|
        for (int64_t i1 = 0; i1 < ne1; ++i1) {
 | 
						|
            const int64_t pos = (w - i1 - 1) + i2;
 | 
						|
            for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | 
						|
                dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_get_rel_pos(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_BF16:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_get_rel_pos_f16(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_add_rel_pos
 | 
						|
 | 
						|
static void ggml_compute_forward_add_rel_pos_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
    const ggml_tensor * src2 = dst->src[2];
 | 
						|
 | 
						|
    const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
 | 
						|
    if (!inplace) {
 | 
						|
        if (params->ith == 0) {
 | 
						|
            memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
 | 
						|
        }
 | 
						|
        ggml_barrier(params->threadpool);
 | 
						|
    }
 | 
						|
    // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
 | 
						|
 | 
						|
    float * src1_data = (float *) src1->data;
 | 
						|
    float * src2_data = (float *) src2->data;
 | 
						|
    float * dst_data  = (float *) dst->data;
 | 
						|
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
    const int64_t ne11 = src1->ne[1];
 | 
						|
    const int64_t ne12 = src1->ne[2];
 | 
						|
    const int64_t ne13 = src1->ne[3];
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    // total patches in dst
 | 
						|
    const int np = ne13;
 | 
						|
 | 
						|
    // patches per thread
 | 
						|
    const int dp = (np + nth - 1)/nth;
 | 
						|
 | 
						|
    // patch range for this thread
 | 
						|
    const int ip0 = dp*ith;
 | 
						|
    const int ip1 = MIN(ip0 + dp, np);
 | 
						|
 | 
						|
    for (int64_t i13 = ip0; i13 < ip1; ++i13) {
 | 
						|
        for (int64_t i12 = 0; i12 < ne12; ++i12) {
 | 
						|
            for (int64_t i11 = 0; i11 < ne11; ++i11) {
 | 
						|
                const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
 | 
						|
                for (int64_t i10 = 0; i10 < ne10; ++i10) {
 | 
						|
                    const int64_t jp0  = jp1 + i10;
 | 
						|
                    const float src1_e = src1_data[jp0];
 | 
						|
                    const float src2_e = src2_data[jp0];
 | 
						|
 | 
						|
                    const int64_t jdh = jp0 * ne10;
 | 
						|
                    const int64_t jdw = jdh - (ne10 - 1) * i10;
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < ne10; ++j) {
 | 
						|
                        dst_data[jdh + j     ] += src2_e;
 | 
						|
                        dst_data[jdw + j*ne10] += src1_e;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_add_rel_pos(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_add_rel_pos_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_rwkv_wkv6
 | 
						|
 | 
						|
static void ggml_compute_forward_rwkv_wkv6_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const int64_t T = dst->src[1]->ne[2];
 | 
						|
    const int64_t C = dst->ne[0];
 | 
						|
    const int64_t HEADS = dst->src[1]->ne[1];
 | 
						|
    const int64_t n_seqs = dst->src[5]->ne[1];
 | 
						|
    const int64_t head_size = C / HEADS;
 | 
						|
 | 
						|
    float * dst_data = (float *) dst->data;
 | 
						|
    float * state = ((float *) dst->data) + C * T;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    if (ith >= HEADS) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int h_start = (HEADS * ith) / nth;
 | 
						|
    const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
 | 
						|
                (HEADS * (ith + 1)) / nth : HEADS;
 | 
						|
 | 
						|
    float * k =          (float *) dst->src[0]->data;
 | 
						|
    float * v =          (float *) dst->src[1]->data;
 | 
						|
    float * r =          (float *) dst->src[2]->data;
 | 
						|
    float * time_faaaa = (float *) dst->src[3]->data;
 | 
						|
    float * time_decay = (float *) dst->src[4]->data;
 | 
						|
 | 
						|
    size_t t_stride = HEADS * head_size; // Same to C
 | 
						|
 | 
						|
    size_t h_stride = C / HEADS;
 | 
						|
    GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
 | 
						|
    size_t h_stride_2d = head_size * head_size;
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(dst_data, 0, T * C * sizeof(float));
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
 | 
						|
    #if defined(__AVX__) && !defined(__AVX512F__)
 | 
						|
        #define GGML_F32X GGML_F32x8
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x8_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x8_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x8_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x8_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x8_FMA
 | 
						|
        #define WKV_VECTOR_SIZE 8
 | 
						|
    #elif defined(__AVX512F__)
 | 
						|
        #define GGML_F32X GGML_F32x16
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x16_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x16_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x16_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x16_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x16_FMA
 | 
						|
        #define WKV_VECTOR_SIZE 16
 | 
						|
    #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
 | 
						|
        #define GGML_F32X GGML_F32xt
 | 
						|
        #define GGML_F32X_SET1 GGML_F32xt_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32xt_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32xt_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32xt_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32xt_FMA
 | 
						|
        #define WKV_VECTOR_SIZE 8
 | 
						|
    #elif defined(__ARM_NEON) && defined(__aarch64__)
 | 
						|
        #define GGML_F32X GGML_F32x4
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x4_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x4_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x4_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x4_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x4_FMA
 | 
						|
        #define WKV_VECTOR_SIZE 4
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef WKV_VECTOR_SIZE
 | 
						|
        int wkv_vector_size;
 | 
						|
        #if defined(__ARM_FEATURE_SVE)
 | 
						|
            wkv_vector_size = svcntw();
 | 
						|
        #else
 | 
						|
            wkv_vector_size = WKV_VECTOR_SIZE;
 | 
						|
        #endif
 | 
						|
        const int64_t vec_count = head_size / wkv_vector_size;
 | 
						|
 | 
						|
        for (int64_t t = 0; t < T; t++) {
 | 
						|
            size_t t_offset = t * t_stride;
 | 
						|
            size_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
            float * state_cur = state + state_offset;
 | 
						|
            float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
 | 
						|
 | 
						|
            for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                size_t h_offset = h * h_stride;
 | 
						|
                size_t t_h_offset = t_offset + h_offset;
 | 
						|
                size_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                    size_t t_h_i_offset = t_h_offset + i;
 | 
						|
                    size_t h_i_offset = h_offset + i;
 | 
						|
                    size_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                    float k_val = k[t_h_i_offset];
 | 
						|
                    float r_val = r[t_h_i_offset];
 | 
						|
                    float time_faaaa_val = time_faaaa[h_i_offset];
 | 
						|
                    float time_decay_val = time_decay[t_h_i_offset];
 | 
						|
 | 
						|
                    // Broadcast scalar values to vectors
 | 
						|
                    GGML_F32X k_vec = GGML_F32X_SET1(k_val);
 | 
						|
                    GGML_F32X r_vec = GGML_F32X_SET1(r_val);
 | 
						|
                    GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
 | 
						|
                    GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < vec_count; j++) {
 | 
						|
                        size_t base_j = j * wkv_vector_size;
 | 
						|
                        size_t t_h_j_offset = t_h_offset + base_j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
 | 
						|
 | 
						|
                        // Load x elements at once
 | 
						|
                        GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
 | 
						|
                        GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
 | 
						|
                        GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
 | 
						|
 | 
						|
                        // Compute kv = v * k
 | 
						|
                        GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
 | 
						|
 | 
						|
                        // Compute temp = kv * time_faaaa + prev_state
 | 
						|
                        GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
 | 
						|
 | 
						|
                        // Update dst: dst += temp * r
 | 
						|
                        dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
 | 
						|
                        GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
 | 
						|
 | 
						|
                        // Update state: state = prev_state * time_decay + kv
 | 
						|
                        GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
 | 
						|
                        GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Handle remaining elements, this will not be used.
 | 
						|
                    for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
 | 
						|
                        size_t t_h_j_offset = t_h_offset + j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
                        float v_val = v[t_h_j_offset];
 | 
						|
                        float kv_val = v_val * k_val;
 | 
						|
                        float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                        float temp_val = kv_val * time_faaaa_val + prev_state_val;
 | 
						|
                        dst_data[t_h_j_offset] += temp_val * r_val;
 | 
						|
                        state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    #else
 | 
						|
        // basically fused operations:
 | 
						|
        // dst = r @ (time_faaaa * (k @ v) + state),
 | 
						|
        // state = time_decay * state + (k @ v),
 | 
						|
        // recursive through each token
 | 
						|
        for (int64_t t = 0; t < T; t++) {
 | 
						|
            size_t t_offset = t * t_stride;
 | 
						|
            size_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
            float * state_cur = state + state_offset;
 | 
						|
            float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
 | 
						|
 | 
						|
            for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                size_t h_offset = h * h_stride;
 | 
						|
                size_t t_h_offset = t_offset + h_offset;
 | 
						|
                size_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                    size_t t_h_i_offset = t_h_offset + i;
 | 
						|
                    size_t h_i_offset = h_offset + i;
 | 
						|
                    size_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                    float k_val = k[t_h_i_offset];
 | 
						|
                    float r_val = r[t_h_i_offset];
 | 
						|
                    float time_faaaa_val = time_faaaa[h_i_offset];
 | 
						|
                    // RWKV v6: different time_decay for each token.
 | 
						|
                    float time_decay_val = time_decay[t_h_i_offset];
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                        size_t t_h_j_offset = t_h_offset + j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
 | 
						|
                        float v_val = v[t_h_j_offset];
 | 
						|
                        float kv_val = v_val * k_val;
 | 
						|
                        float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                        float temp_val = kv_val * time_faaaa_val + prev_state_val;
 | 
						|
                        dst_data[t_h_j_offset] += temp_val * r_val;
 | 
						|
                        state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ggml_compute_forward_rwkv_wkv6(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rwkv_wkv6_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_gla
 | 
						|
 | 
						|
static void ggml_compute_forward_gla_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const int64_t T = dst->src[1]->ne[2];
 | 
						|
    const int64_t C = dst->ne[0];
 | 
						|
    const int64_t HEADS = dst->src[1]->ne[1];
 | 
						|
    const int64_t n_seqs = dst->src[4]->ne[1];
 | 
						|
    const int64_t head_size = C / HEADS;
 | 
						|
    const float scale = ggml_get_op_params_f32(dst, 0);
 | 
						|
 | 
						|
    float * dst_data = (float *) dst->data;
 | 
						|
    float * state = ((float *) dst->data) + C * T;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    if (ith >= HEADS) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int h_start = (HEADS * ith) / nth;
 | 
						|
    const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
 | 
						|
                (HEADS * (ith + 1)) / nth : HEADS;
 | 
						|
 | 
						|
    float * k = (float *) dst->src[0]->data;
 | 
						|
    float * v = (float *) dst->src[1]->data;
 | 
						|
    float * q = (float *) dst->src[2]->data;
 | 
						|
    float * g = (float *) dst->src[3]->data;
 | 
						|
 | 
						|
    size_t t_stride = HEADS * head_size; // Same to C
 | 
						|
 | 
						|
    size_t h_stride = C / HEADS;
 | 
						|
    GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
 | 
						|
    size_t h_stride_2d = head_size * head_size;
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        memset(dst_data, 0, T * C * sizeof(float));
 | 
						|
    }
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
 | 
						|
    #if defined(__AVX__) && !defined(__AVX512F__)
 | 
						|
        #define GGML_F32X GGML_F32x8
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x8_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x8_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x8_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x8_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x8_FMA
 | 
						|
        #define GLA_VECTOR_SIZE 8
 | 
						|
    #elif defined(__AVX512F__)
 | 
						|
        #define GGML_F32X GGML_F32x16
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x16_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x16_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x16_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x16_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x16_FMA
 | 
						|
        #define GLA_VECTOR_SIZE 16
 | 
						|
    #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
 | 
						|
        #define GGML_F32X GGML_F32xt
 | 
						|
        #define GGML_F32X_SET1 GGML_F32xt_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32xt_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32xt_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32xt_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32xt_FMA
 | 
						|
        #define GLA_VECTOR_SIZE 8
 | 
						|
    #elif defined(__ARM_NEON) && defined(__aarch64__)
 | 
						|
        #define GGML_F32X GGML_F32x4
 | 
						|
        #define GGML_F32X_SET1 GGML_F32x4_SET1
 | 
						|
        #define GGML_F32X_LOAD GGML_F32x4_LOAD
 | 
						|
        #define GGML_F32X_STORE GGML_F32x4_STORE
 | 
						|
        #define GGML_F32X_MUL GGML_F32x4_MUL
 | 
						|
        #define GGML_F32X_FMA GGML_F32x4_FMA
 | 
						|
        #define GLA_VECTOR_SIZE 4
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef GLA_VECTOR_SIZE
 | 
						|
        int gla_vector_size;
 | 
						|
        #if defined(__ARM_FEATURE_SVE)
 | 
						|
            gla_vector_size = svcntw();
 | 
						|
        #else
 | 
						|
            gla_vector_size = GLA_VECTOR_SIZE;
 | 
						|
        #endif
 | 
						|
        const int64_t vec_count = head_size / gla_vector_size;
 | 
						|
 | 
						|
        for (int64_t t = 0; t < T; t++) {
 | 
						|
            size_t t_offset = t * t_stride;
 | 
						|
            size_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
            float * state_cur = state + state_offset;
 | 
						|
            float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
 | 
						|
 | 
						|
            for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                size_t h_offset = h * h_stride;
 | 
						|
                size_t t_h_offset = t_offset + h_offset;
 | 
						|
                size_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                    size_t t_h_i_offset = t_h_offset + i;
 | 
						|
                    size_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                    float k_val = k[t_h_i_offset];
 | 
						|
                    float q_val = q[t_h_i_offset] * scale;
 | 
						|
                    float g_val = g[t_h_i_offset];
 | 
						|
 | 
						|
                    // Broadcast scalar values to vectors
 | 
						|
                    GGML_F32X k_vec = GGML_F32X_SET1(k_val);
 | 
						|
                    GGML_F32X q_vec = GGML_F32X_SET1(q_val);
 | 
						|
                    GGML_F32X g_vec = GGML_F32X_SET1(g_val);
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < vec_count; j++) {
 | 
						|
                        size_t base_j = j * gla_vector_size;
 | 
						|
                        size_t t_h_j_offset = t_h_offset + base_j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
 | 
						|
 | 
						|
                        // Load x elements at once
 | 
						|
                        GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
 | 
						|
                        GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
 | 
						|
                        GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
 | 
						|
 | 
						|
                        // Compute kv = v * k
 | 
						|
                        GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
 | 
						|
 | 
						|
                        // Compute temp = prev_state * g + kv
 | 
						|
                        GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
 | 
						|
 | 
						|
                        // Update dst: dst += temp * q
 | 
						|
                        dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
 | 
						|
                        GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
 | 
						|
 | 
						|
                        // Update state
 | 
						|
                        GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Handle remaining elements, this will not be used.
 | 
						|
                    for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
 | 
						|
                        size_t t_h_j_offset = t_h_offset + j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
                        float v_val = v[t_h_j_offset];
 | 
						|
                        float kv_val = v_val * k_val;
 | 
						|
                        float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                        float temp_val = kv_val + prev_state_val * g_val;
 | 
						|
                        dst_data[t_h_j_offset] += temp_val * q_val;
 | 
						|
                        state_cur[h_2d_i_j_offset] = temp_val;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    #else
 | 
						|
        for (int64_t t = 0; t < T; t++) {
 | 
						|
            size_t t_offset = t * t_stride;
 | 
						|
            size_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
            float * state_cur = state + state_offset;
 | 
						|
            float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
 | 
						|
 | 
						|
            for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                size_t h_offset = h * h_stride;
 | 
						|
                size_t t_h_offset = t_offset + h_offset;
 | 
						|
                size_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                    size_t t_h_i_offset = t_h_offset + i;
 | 
						|
                    size_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                    float k_val = k[t_h_i_offset];
 | 
						|
                    float q_val = q[t_h_i_offset] * scale;
 | 
						|
                    float g_val = g[t_h_i_offset];
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                        size_t t_h_j_offset = t_h_offset + j;
 | 
						|
                        size_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
 | 
						|
                        float v_val = v[t_h_j_offset];
 | 
						|
                        float kv_val = v_val * k_val;
 | 
						|
                        float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                        float temp_val = prev_state_val * g_val + kv_val;
 | 
						|
                        dst_data[t_h_j_offset] += temp_val * q_val;
 | 
						|
                        state_cur[h_2d_i_j_offset] = temp_val;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ggml_compute_forward_gla(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_gla_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_rwkv_wkv7
 | 
						|
 | 
						|
static void ggml_compute_forward_rwkv_wkv7_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
    const int64_t T = dst->src[1]->ne[2];
 | 
						|
    const int64_t C = dst->ne[0];
 | 
						|
    const int64_t HEADS = dst->src[1]->ne[1];
 | 
						|
    const int64_t n_seqs = dst->src[6]->ne[1];
 | 
						|
    const int64_t head_size = C / HEADS;
 | 
						|
 | 
						|
    float * dst_data = (float *) dst->data;
 | 
						|
    float * state = ((float *) dst->data) + C * T;
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    if (ith >= HEADS) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int h_start = (HEADS * ith) / nth;
 | 
						|
    const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
 | 
						|
                (HEADS * (ith + 1)) / nth : HEADS;
 | 
						|
 | 
						|
    float * r = (float *) dst->src[0]->data;
 | 
						|
    float * w = (float *) dst->src[1]->data;
 | 
						|
    float * k = (float *) dst->src[2]->data;
 | 
						|
    float * v = (float *) dst->src[3]->data;
 | 
						|
    float * a = (float *) dst->src[4]->data;
 | 
						|
    float * b = (float *) dst->src[5]->data;
 | 
						|
 | 
						|
    int64_t t_stride = HEADS * head_size; // Same to C
 | 
						|
 | 
						|
    int64_t h_stride = C / HEADS;
 | 
						|
    GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
 | 
						|
    int64_t h_stride_2d = head_size * head_size;
 | 
						|
 | 
						|
    #if defined(GGML_SIMD)
 | 
						|
        #if defined(__ARM_FEATURE_SVE)
 | 
						|
            // scalar Route to scalar implementation       //TODO: Write SVE code
 | 
						|
            for (int64_t t = 0; t < T; t++) {
 | 
						|
                int64_t t_offset = t * t_stride;
 | 
						|
                int64_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
                float * state_cur = state + state_offset;
 | 
						|
                float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
 | 
						|
 | 
						|
                for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                    int64_t h_offset = h * h_stride;
 | 
						|
                    int64_t t_h_offset = t_offset + h_offset;
 | 
						|
                    int64_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                    for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                        int64_t t_h_i_offset = t_h_offset + i;
 | 
						|
                        int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                        float v_val = v[t_h_i_offset];
 | 
						|
 | 
						|
                        float sa = 0, result = 0;
 | 
						|
                        for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                            sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
 | 
						|
                        }
 | 
						|
 | 
						|
                        for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                            int64_t t_h_j_offset = t_h_offset + j;
 | 
						|
                            int64_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
 | 
						|
                            float r_val = r[t_h_j_offset];
 | 
						|
                            float w_val = w[t_h_j_offset];
 | 
						|
                            float k_val = k[t_h_j_offset];
 | 
						|
                            float b_val = b[t_h_j_offset];
 | 
						|
                            float kv_val = v_val * k_val;
 | 
						|
                            float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                            state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
 | 
						|
                            result += state_cur[h_2d_i_j_offset] * r_val;
 | 
						|
                        }
 | 
						|
                        dst_data[t_h_i_offset] = result;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            for (int64_t t = 0; t < T; t++) {
 | 
						|
                int64_t t_offset = t * t_stride;
 | 
						|
                int64_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
                float * state_cur = state + state_offset;
 | 
						|
                float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
 | 
						|
 | 
						|
                for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                    int64_t h_offset = h * h_stride;
 | 
						|
                    int64_t t_h_offset = t_offset + h_offset;
 | 
						|
                    int64_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                    for (int64_t ii = 0; ii < head_size; ii++) {
 | 
						|
                        int64_t t_h_i_offset = t_h_offset + ii;
 | 
						|
                        int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
 | 
						|
 | 
						|
                        GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
 | 
						|
 | 
						|
                        float sa = 0;
 | 
						|
                        {
 | 
						|
                            GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
 | 
						|
                            GGML_F32_VEC ax[GGML_F32_ARR];
 | 
						|
                            GGML_F32_VEC ay[GGML_F32_ARR];
 | 
						|
                            for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
 | 
						|
                                for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
 | 
						|
                                    ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
 | 
						|
                                    ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
 | 
						|
                                    sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                            GGML_F32_VEC_REDUCE(sa, sum);
 | 
						|
                        }
 | 
						|
 | 
						|
                        GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
 | 
						|
 | 
						|
                        int64_t j = 0;
 | 
						|
                        GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
 | 
						|
                        for (; j < head_size; j += GGML_F32_STEP) {
 | 
						|
                            for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
 | 
						|
                                int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
 | 
						|
                                int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
 | 
						|
 | 
						|
                                GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
 | 
						|
                                GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
 | 
						|
                                GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
 | 
						|
                                GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
 | 
						|
 | 
						|
                                k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
 | 
						|
 | 
						|
                                GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
 | 
						|
                                // kv + s * decay + sa * b
 | 
						|
                                state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
 | 
						|
                                state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
 | 
						|
                                GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
 | 
						|
 | 
						|
                                result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
 | 
						|
 | 
						|
                        // There shouldn't be left-overs though.
 | 
						|
                        for (; j < head_size; j++) {
 | 
						|
                            int64_t t_h_j_offset = t_h_offset + j;
 | 
						|
                            int64_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
 | 
						|
                            float r_val = r[t_h_j_offset];
 | 
						|
                            float w_val = w[t_h_j_offset];
 | 
						|
                            float k_val = k[t_h_j_offset];
 | 
						|
                            float b_val = b[t_h_j_offset];
 | 
						|
                            float kv_val = v[t_h_i_offset] * k_val;
 | 
						|
 | 
						|
                            float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                            state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
 | 
						|
                            dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
    #else
 | 
						|
        for (int64_t t = 0; t < T; t++) {
 | 
						|
            int64_t t_offset = t * t_stride;
 | 
						|
            int64_t state_offset = head_size * C * (t / (T / n_seqs));
 | 
						|
            float * state_cur = state + state_offset;
 | 
						|
            float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
 | 
						|
 | 
						|
            for (int64_t h = h_start; h < h_end; h++) {
 | 
						|
                int64_t h_offset = h * h_stride;
 | 
						|
                int64_t t_h_offset = t_offset + h_offset;
 | 
						|
                int64_t h_2d_offset = h * h_stride_2d;
 | 
						|
 | 
						|
                for (int64_t i = 0; i < head_size; i++) {
 | 
						|
                    int64_t t_h_i_offset = t_h_offset + i;
 | 
						|
                    int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
 | 
						|
 | 
						|
                    float v_val = v[t_h_i_offset];
 | 
						|
 | 
						|
                    float sa = 0, result = 0;
 | 
						|
                    for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                        sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
 | 
						|
                    }
 | 
						|
 | 
						|
                    for (int64_t j = 0; j < head_size; j++) {
 | 
						|
                        int64_t t_h_j_offset = t_h_offset + j;
 | 
						|
                        int64_t h_2d_i_j_offset = h_2d_i_offset + j;
 | 
						|
 | 
						|
                        float r_val = r[t_h_j_offset];
 | 
						|
                        float w_val = w[t_h_j_offset];
 | 
						|
                        float k_val = k[t_h_j_offset];
 | 
						|
                        float b_val = b[t_h_j_offset];
 | 
						|
                        float kv_val = v_val * k_val;
 | 
						|
                        float prev_state_val = state_prev[h_2d_i_j_offset];
 | 
						|
                        state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
 | 
						|
                        result += state_cur[h_2d_i_j_offset] * r_val;
 | 
						|
                    }
 | 
						|
                    dst_data[t_h_i_offset] = result;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ggml_compute_forward_rwkv_wkv7(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_rwkv_wkv7_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_map_custom1
 | 
						|
 | 
						|
void ggml_compute_forward_map_custom1(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * a = dst->src[0];
 | 
						|
 | 
						|
    struct ggml_map_custom1_op_params p;
 | 
						|
    memcpy(&p, dst->op_params, sizeof(p));
 | 
						|
 | 
						|
    p.fun(dst, a, params->ith, params->nth, p.userdata);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_map_custom2
 | 
						|
 | 
						|
void ggml_compute_forward_map_custom2(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * a = dst->src[0];
 | 
						|
    const ggml_tensor * b = dst->src[1];
 | 
						|
 | 
						|
    struct ggml_map_custom2_op_params p;
 | 
						|
    memcpy(&p, dst->op_params, sizeof(p));
 | 
						|
 | 
						|
    p.fun(dst, a, b, params->ith, params->nth, p.userdata);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_map_custom3
 | 
						|
 | 
						|
void ggml_compute_forward_map_custom3(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
              ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * a = dst->src[0];
 | 
						|
    const ggml_tensor * b = dst->src[1];
 | 
						|
    const ggml_tensor * c = dst->src[2];
 | 
						|
 | 
						|
    struct ggml_map_custom3_op_params p;
 | 
						|
    memcpy(&p, dst->op_params, sizeof(p));
 | 
						|
 | 
						|
    p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_custom
 | 
						|
 | 
						|
void ggml_compute_forward_custom(
 | 
						|
    const struct ggml_compute_params * params,
 | 
						|
          struct ggml_tensor * dst) {
 | 
						|
 | 
						|
    struct ggml_custom_op_params p;
 | 
						|
    memcpy(&p, dst->op_params, sizeof(p));
 | 
						|
 | 
						|
    p.fun(dst, params->ith, params->nth, p.userdata);
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_cross_entropy_loss
 | 
						|
 | 
						|
static void ggml_compute_forward_cross_entropy_loss_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 | 
						|
    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src1));
 | 
						|
    GGML_ASSERT(ggml_is_scalar(dst));
 | 
						|
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
    const int64_t nc = src0->ne[0];
 | 
						|
    const int64_t nr = ggml_nrows(src0);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    float * sums =  (float *) params->wdata;
 | 
						|
    float * st   = ((float *) params->wdata) + nth + ith*nc;
 | 
						|
    float sum_thread = 0.0f;
 | 
						|
 | 
						|
    GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int64_t dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int64_t ir0 = dr*ith;
 | 
						|
    const int64_t ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    for (int64_t i1 = ir0; i1 < ir1; ++i1) {
 | 
						|
        const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
 | 
						|
        const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int64_t i = 0; i < nc; ++i) {
 | 
						|
            //printf("p[%d] = %f\n", i, p[i]);
 | 
						|
            assert(!isnan(s0[i]));
 | 
						|
            assert(!isnan(s1[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        float max = -INFINITY;
 | 
						|
        ggml_vec_max_f32(nc, &max, s0);
 | 
						|
        const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
 | 
						|
        assert(sum_softmax >= 0.0);
 | 
						|
 | 
						|
        ggml_vec_add1_f32(nc, st, st, -sum_softmax);
 | 
						|
        ggml_vec_mul_f32(nc, st, st, s1);
 | 
						|
 | 
						|
        float sum_st = 0.0f;
 | 
						|
        ggml_vec_sum_f32(nc, &sum_st, st);
 | 
						|
        sum_thread += sum_st;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int64_t i = 0; i < nc; ++i) {
 | 
						|
            assert(!isnan(st[i]));
 | 
						|
            assert(!isinf(st[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    sums[ith] = sum_thread;
 | 
						|
    ggml_barrier(params->threadpool);
 | 
						|
 | 
						|
    if (ith == 0) {
 | 
						|
        float * dp = (float *) dst->data;
 | 
						|
        ggml_vec_sum_f32(nth, dp, sums);
 | 
						|
        dp[0] *= -1.0f / (float) nr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_cross_entropy_loss(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_cross_entropy_loss_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ggml_compute_forward_cross_entropy_loss_back
 | 
						|
 | 
						|
static void ggml_compute_forward_cross_entropy_loss_back_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * grad  = dst->src[0]; // gradient of forward pass output
 | 
						|
    const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
 | 
						|
    const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(dst));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src0f));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src1f));
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(grad));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
 | 
						|
 | 
						|
    const int64_t ith = params->ith;
 | 
						|
    const int64_t nth = params->nth;
 | 
						|
 | 
						|
    // TODO: handle transposed/permuted matrices
 | 
						|
    const int64_t nc = src0f->ne[0];
 | 
						|
    const int64_t nr = ggml_nrows(src0f);
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int64_t dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int64_t ir0 = dr*ith;
 | 
						|
    const int64_t ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
 | 
						|
 | 
						|
    for (int64_t i1 = ir0; i1 < ir1; i1++) {
 | 
						|
        float       * ds0 = (float       *)((char       *) dst->data   + i1*dst->nb[1]);
 | 
						|
        const float * s0  = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
 | 
						|
        const float * s1  = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int64_t i = 0; i < nc; ++i) {
 | 
						|
            //printf("p[%d] = %f\n", i, p[i]);
 | 
						|
            assert(!isnan(s0[i]));
 | 
						|
            assert(!isnan(s1[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // soft_max
 | 
						|
        float max = -INFINITY;
 | 
						|
        ggml_vec_max_f32(nc, &max, s0);
 | 
						|
        const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
 | 
						|
        assert(sum > 0.0);
 | 
						|
        ggml_vec_scale_f32(nc, ds0, 1.0/sum);
 | 
						|
 | 
						|
        // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
 | 
						|
        ggml_vec_sub_f32(nc, ds0, ds0, s1);
 | 
						|
        ggml_vec_scale_f32(nc, ds0, d_by_nr);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (int64_t i = 0; i < nc; ++i) {
 | 
						|
            assert(!isnan(ds0[i]));
 | 
						|
            assert(!isinf(ds0[i]));
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_cross_entropy_loss_back(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_compute_forward_opt_step_adamw_f32(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0         = dst->src[0];
 | 
						|
    const ggml_tensor * src0_grad    = dst->src[1];
 | 
						|
    const ggml_tensor * src0_grad_m  = dst->src[2];
 | 
						|
    const ggml_tensor * src0_grad_v  = dst->src[3];
 | 
						|
    const ggml_tensor * adamw_params = dst->src[4];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
 | 
						|
    GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
 | 
						|
    GGML_ASSERT(ggml_nelements(adamw_params) == 7);
 | 
						|
 | 
						|
    const int ith = params->ith;
 | 
						|
    const int nth = params->nth;
 | 
						|
 | 
						|
    const int nr  = ggml_nrows(src0);
 | 
						|
 | 
						|
    GGML_TENSOR_UNARY_OP_LOCALS
 | 
						|
    GGML_ASSERT(nb00 == sizeof(float));
 | 
						|
 | 
						|
    // rows per thread
 | 
						|
    const int dr = (nr + nth - 1)/nth;
 | 
						|
 | 
						|
    // row range for this thread
 | 
						|
    const int ir0 = dr*ith;
 | 
						|
    const int ir1 = MIN(ir0 + dr, nr);
 | 
						|
 | 
						|
    const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
 | 
						|
    const float alpha  = adamw_params_ptr[0];
 | 
						|
    const float beta1  = adamw_params_ptr[1];
 | 
						|
    const float beta2  = adamw_params_ptr[2];
 | 
						|
    const float eps    = adamw_params_ptr[3];
 | 
						|
    const float wd     = adamw_params_ptr[4];
 | 
						|
    const float beta1h = adamw_params_ptr[5];
 | 
						|
    const float beta2h = adamw_params_ptr[6];
 | 
						|
 | 
						|
    for (int ir = ir0; ir < ir1; ++ir) {
 | 
						|
        const int64_t i03 = ir/(ne02*ne01);
 | 
						|
        const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
 | 
						|
        const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | 
						|
 | 
						|
        const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
 | 
						|
 | 
						|
        float       * w = (float       *) ((char       *) src0->data        + offset); // weight
 | 
						|
        const float * g = (const float *) ((const char *) src0_grad->data   + offset); // grad
 | 
						|
        float       * m = (float       *) ((char       *) src0_grad_m->data + offset);
 | 
						|
        float       * v = (float       *) ((char       *) src0_grad_v->data + offset);
 | 
						|
 | 
						|
        for (int i00 = 0; i00 < ne00; ++i00) {
 | 
						|
            m[i00] = m[i00]*beta1 +        g[i00]*(1.0f - beta1);
 | 
						|
            v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
 | 
						|
 | 
						|
            const float mh =       m[i00]*beta1h;
 | 
						|
            const float vh = sqrtf(v[i00]*beta2h) + eps;
 | 
						|
 | 
						|
            // The weight decay is applied independently of the Adam momenta m and v.
 | 
						|
            // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
 | 
						|
            // See: https://arxiv.org/pdf/1711.05101v3.pdf
 | 
						|
            w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_compute_forward_opt_step_adamw(
 | 
						|
        const ggml_compute_params * params,
 | 
						|
        ggml_tensor * dst) {
 | 
						|
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
 | 
						|
    switch (src0->type) {
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            {
 | 
						|
                ggml_compute_forward_opt_step_adamw_f32(params, dst);
 | 
						|
            } break;
 | 
						|
        default:
 | 
						|
            {
 | 
						|
                GGML_ABORT("fatal error");
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 |