mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	Also adds Falcon-180B support. Closes #3049 Co-authored-by: jb <jonathan.t.barnard@gmail.com>
		
			
				
	
	
		
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# HF falcon--> gguf conversion
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import contextlib
 | 
						|
import json
 | 
						|
import os
 | 
						|
import struct
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from transformers import AutoTokenizer  # type: ignore[import]
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | 
						|
import gguf
 | 
						|
 | 
						|
 | 
						|
def count_model_parts(dir_model: Path, prefix: str) -> int:
 | 
						|
    num_parts = 0
 | 
						|
    for filename in os.listdir(dir_model):
 | 
						|
        if filename.startswith(prefix):
 | 
						|
            num_parts += 1
 | 
						|
 | 
						|
    if num_parts > 0:
 | 
						|
        print("gguf: found " + str(num_parts) + " model parts")
 | 
						|
    return num_parts
 | 
						|
 | 
						|
 | 
						|
def parse_args() -> argparse.Namespace:
 | 
						|
    parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
 | 
						|
    parser.add_argument(
 | 
						|
        "--vocab-only", action="store_true",
 | 
						|
        help="extract only the vocab",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--outfile", type=Path,
 | 
						|
        help="path to write to; default: based on input",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "model", type=Path,
 | 
						|
        help="directory containing model file, or model file itself (*.bin)",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
 | 
						|
        help="output format - use 0 for float32, 1 for float16",
 | 
						|
    )
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
args = parse_args()
 | 
						|
 | 
						|
dir_model = args.model
 | 
						|
ftype = args.ftype
 | 
						|
if not dir_model.is_dir():
 | 
						|
    print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
if args.outfile is not None:
 | 
						|
    fname_out = args.outfile
 | 
						|
else:
 | 
						|
    # output in the same directory as the model by default
 | 
						|
    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | 
						|
 | 
						|
print("gguf: loading model "+dir_model.name)
 | 
						|
 | 
						|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
if hparams["architectures"][0] != "FalconForCausalLM":
 | 
						|
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
						|
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# get number of model parts
 | 
						|
num_parts = count_model_parts(dir_model, "model-00")
 | 
						|
if num_parts:
 | 
						|
    is_safetensors = True
 | 
						|
    from safetensors import safe_open
 | 
						|
else:
 | 
						|
    is_safetensors = False
 | 
						|
    num_parts = count_model_parts(dir_model, "pytorch_model-")
 | 
						|
 | 
						|
ARCH=gguf.MODEL_ARCH.FALCON
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
block_count = hparams["num_hidden_layers"]
 | 
						|
 | 
						|
gguf_writer.add_name("Falcon")
 | 
						|
gguf_writer.add_context_length(2048) # not in config.json
 | 
						|
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 | 
						|
gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
						|
if "num_kv_heads" in hparams:
 | 
						|
    gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
 | 
						|
else:
 | 
						|
    gguf_writer.add_head_count_kv(1)
 | 
						|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
 | 
						|
gguf_writer.add_file_type(ftype)
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
print("gguf: get tokenizer metadata")
 | 
						|
 | 
						|
tokens: list[bytearray] = []
 | 
						|
scores: list[float] = []
 | 
						|
toktypes: list[int] = []
 | 
						|
 | 
						|
# gpt2 tokenizer
 | 
						|
gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
 | 
						|
print("gguf: get gpt2 tokenizer vocab")
 | 
						|
 | 
						|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
						|
 | 
						|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
 | 
						|
# This causes downstream issues with mismatched tensor sizes when running the inference
 | 
						|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | 
						|
assert max(tokenizer.vocab.values()) < vocab_size
 | 
						|
 | 
						|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
						|
 | 
						|
for i in range(vocab_size):
 | 
						|
    tokens.append(reverse_vocab[i])
 | 
						|
    scores.append(0.0) # dummy
 | 
						|
    toktypes.append(gguf.TokenType.NORMAL)
 | 
						|
 | 
						|
gguf_writer.add_token_list(tokens)
 | 
						|
gguf_writer.add_token_scores(scores)
 | 
						|
gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | 
						|
special_vocab.add_to_gguf(gguf_writer)
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
						|
 | 
						|
# params for qkv transform
 | 
						|
n_head    = hparams["num_attention_heads"]
 | 
						|
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
 | 
						|
 | 
						|
head_dim = hparams["hidden_size"] // n_head
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
if num_parts == 0:
 | 
						|
    part_names = iter(("pytorch_model.bin",))
 | 
						|
elif is_safetensors:
 | 
						|
    part_names = (
 | 
						|
        f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
 | 
						|
    )
 | 
						|
else:
 | 
						|
    part_names = (
 | 
						|
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
						|
    )
 | 
						|
 | 
						|
for part_name in part_names:
 | 
						|
    if args.vocab_only:
 | 
						|
        break
 | 
						|
    print("gguf: loading model part '" + part_name + "'")
 | 
						|
    if is_safetensors:
 | 
						|
        ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
 | 
						|
    else:
 | 
						|
        ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
 | 
						|
 | 
						|
    with ctx as model_part:
 | 
						|
        for name in model_part.keys():
 | 
						|
            data = model_part.get_tensor(name) if is_safetensors else model_part[name]
 | 
						|
 | 
						|
            old_dtype = data.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
						|
                data = data.to(torch.float32)
 | 
						|
 | 
						|
            # QKV tensor transform
 | 
						|
            # The original query_key_value tensor contains n_head_kv "kv groups",
 | 
						|
            # each consisting of n_head/n_head_kv query weights followed by one key
 | 
						|
            # and one value weight (shared by all query heads in the kv group).
 | 
						|
            # This layout makes it a big pain to work with in GGML.
 | 
						|
            # So we rearrange them here,, so that we have n_head query weights
 | 
						|
            # followed by n_head_kv key weights followed by n_head_kv value weights,
 | 
						|
            # in contiguous fashion.
 | 
						|
            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | 
						|
 | 
						|
            if "query_key_value" in name:
 | 
						|
                qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | 
						|
                q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
 | 
						|
                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
						|
                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
						|
                data = torch.cat((q,k,v)).reshape_as(data)
 | 
						|
 | 
						|
            data = data.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print("Can not map tensor '" + name + "'")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
						|
 | 
						|
            gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
if not args.vocab_only:
 | 
						|
    print("gguf: write tensors")
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
						|
print("")
 |